論文の概要: Efficient and Interpretable Compressive Text Summarisation with
Unsupervised Dual-Agent Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2306.03415v1
- Date: Tue, 6 Jun 2023 05:30:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-07 17:14:32.136434
- Title: Efficient and Interpretable Compressive Text Summarisation with
Unsupervised Dual-Agent Reinforcement Learning
- Title(参考訳): 教師なしデュアルエージェント強化学習による効率的かつ解釈可能な圧縮テキスト要約
- Authors: Peggy Tang, Junbin Gao, Lei Zhang, Zhiyong Wang
- Abstract要約: 教師なし二重エージェント強化学習を用いた効率よく解釈可能な圧縮要約法を提案する。
本モデルでは,ROUGE 測定値を用いて,有望な性能と,Newsroom の大幅な改善を実現している。
- 参考スコア(独自算出の注目度): 36.93582300019002
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, compressive text summarisation offers a balance between the
conciseness issue of extractive summarisation and the factual hallucination
issue of abstractive summarisation. However, most existing compressive
summarisation methods are supervised, relying on the expensive effort of
creating a new training dataset with corresponding compressive summaries. In
this paper, we propose an efficient and interpretable compressive summarisation
method that utilises unsupervised dual-agent reinforcement learning to optimise
a summary's semantic coverage and fluency by simulating human judgment on
summarisation quality. Our model consists of an extractor agent and a
compressor agent, and both agents have a multi-head attentional pointer-based
structure. The extractor agent first chooses salient sentences from a document,
and then the compressor agent compresses these extracted sentences by selecting
salient words to form a summary without using reference summaries to compute
the summary reward. To our best knowledge, this is the first work on
unsupervised compressive summarisation. Experimental results on three widely
used datasets (e.g., Newsroom, CNN/DM, and XSum) show that our model achieves
promising performance and a significant improvement on Newsroom in terms of the
ROUGE metric, as well as interpretability of semantic coverage of summarisation
results.
- Abstract(参考訳): 近年, 圧縮テキスト要約は, 抽出要約の簡潔さ問題と抽象要約の事実幻覚問題とのバランスを保っている。
しかし、既存の圧縮要約手法の多くは、対応する圧縮要約を伴う新しいトレーニングデータセットを作成するためのコストのかかる労力に頼っている。
本稿では,教師なしの二重エージェント強化学習を活用し,要約品質に対する人間の判断をシミュレートし,要約の意味的カバレッジとフラレンスを最適化する,効率的かつ解釈可能な圧縮要約手法を提案する。
本モデルは,抽出剤と圧縮剤から構成され,両剤は多面的注意点に基づく構造を有する。
抽出エージェントは、まず文書からサリエント文を選択し、次に圧縮エージェントは、サレントワードを選択してサマリー文を圧縮し、参照要約を用いずにサマリを形成し、サマリ報酬を算出する。
我々の知る限り、これは教師なし圧縮要約に関する最初の研究である。
広範に使われている3つのデータセット(例えば、Newsroom、CNN/DM、XSum)の実験結果から、我々のモデルは、ROUGEメトリックの点から、Newsroomで有望な性能と大幅な改善を実現し、また要約結果の意味的カバレッジの解釈可能性を示している。
関連論文リスト
- Towards Enhancing Coherence in Extractive Summarization: Dataset and Experiments with LLMs [70.15262704746378]
我々は,5つの公開データセットと自然言語ユーザフィードバックのためのコヒーレントな要約からなる,体系的に作成された人間アノテーションデータセットを提案する。
Falcon-40BとLlama-2-13Bによる予備的な実験では、コヒーレントなサマリーを生成するという点で大幅な性能向上(10%ルージュ-L)が見られた。
論文 参考訳(メタデータ) (2024-07-05T20:25:04Z) - Enhancing Coherence of Extractive Summarization with Multitask Learning [40.349019691412465]
本研究では,コヒーレンス向上を伴う抽出要約のためのマルチタスク学習アーキテクチャを提案する。
アーキテクチャは、抽出要約器とコヒーレント判別器モジュールとを含む。
実験の結果,提案手法は抽出した要約文の連続文の割合を大幅に改善することがわかった。
論文 参考訳(メタデータ) (2023-05-22T09:20:58Z) - Generating Multiple-Length Summaries via Reinforcement Learning for
Unsupervised Sentence Summarization [44.835811239393244]
文要約は、テキストの中核的な内容を維持しながら与えられたテキストを短縮する。
人書きの要約のないテキストを要約するために、教師なしのアプローチが研究されている。
本研究では, 基礎構造を含まない強化学習に基づく抽象モデルを提案する。
論文 参考訳(メタデータ) (2022-12-21T08:34:28Z) - MACSum: Controllable Summarization with Mixed Attributes [56.685735509260276]
MACSumは、混合属性を制御するための最初の人間アノテーションによる要約データセットである。
混合制御可能な要約の新しいタスクに対する2つの単純かつ効果的なパラメータ効率のアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-09T17:17:37Z) - Salience Allocation as Guidance for Abstractive Summarization [61.31826412150143]
本稿では, サリエンセ・サリエンス・ガイダンス(SEASON, SaliencE Allocation as Guidance for Abstractive SummarizatiON)を用いた新しい要約手法を提案する。
SEASONは、サリエンス予測の割り当てを利用して抽象的な要約を導き、異なる抽象性のある記事に順応する。
論文 参考訳(メタデータ) (2022-10-22T02:13:44Z) - COLO: A Contrastive Learning based Re-ranking Framework for One-Stage
Summarization [84.70895015194188]
コントラスト学習に基づく一段階要約フレームワークであるCOLOを提案する。
COLOはCNN/DailyMailベンチマークの1段階システムの抽出と抽象化結果を44.58と46.33ROUGE-1スコアに引き上げた。
論文 参考訳(メタデータ) (2022-09-29T06:11:21Z) - Improving Multi-Document Summarization through Referenced Flexible
Extraction with Credit-Awareness [21.037841262371355]
MDS(Multi-Document Summarization)における注目すべき課題は、入力の非常に長い長さである。
本稿では,この問題を克服するための抽出・抽出・吸収変換器フレームワークを提案する。
擬似抽出オラクルにない文の不等式の重要性をモデルに認識させる損失重み付け機構を提案する。
論文 参考訳(メタデータ) (2022-05-04T04:40:39Z) - EASE: Extractive-Abstractive Summarization with Explanations [18.046254486733186]
情報ボトルネック原理に基づく説明可能な要約システムを提案する。
人間が長い文書をまとめるために2段階の枠組みを使用するという以前の研究に触発されて、私たちのフレームワークは最初に説明として事前に定義された証拠の量を抽出します。
生成した要約の質を著しく犠牲にすることなく、我々のフレームワークからの説明は単純なベースラインよりも適切であることを示す。
論文 参考訳(メタデータ) (2021-05-14T17:45:06Z) - The Summary Loop: Learning to Write Abstractive Summaries Without
Examples [21.85348918324668]
本研究は,与えられた長さ制約に対するカバレッジとフラエンシの組み合わせを最大化することに基づく,教師なし抽象的要約に対する新しいアプローチを提案する。
主要な用語は元のドキュメントから隠蔽され、現在の生成された要約を使ってカバレッジモデルで満たされなければならない。
一般的なニュース要約データセットでテストすると、従来の教師なし手法よりも2R-1ポイント以上性能が向上する。
論文 参考訳(メタデータ) (2021-05-11T23:19:46Z) - Multi-Fact Correction in Abstractive Text Summarization [98.27031108197944]
Span-Factは、質問応答モデルから学んだ知識を活用して、スパン選択によるシステム生成サマリーの補正を行う2つの事実補正モデルのスイートである。
我々のモデルは、ソースコードのセマンティック一貫性を確保するために、反復的または自動回帰的にエンティティを置き換えるために、シングルまたはマルチマスキング戦略を採用している。
実験の結果,自動測定と人的評価の両面において,要約品質を犠牲にすることなく,システム生成要約の事実整合性を大幅に向上させることができた。
論文 参考訳(メタデータ) (2020-10-06T02:51:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。