GaitGCI: Generative Counterfactual Intervention for Gait Recognition
- URL: http://arxiv.org/abs/2306.03428v1
- Date: Tue, 6 Jun 2023 05:59:23 GMT
- Title: GaitGCI: Generative Counterfactual Intervention for Gait Recognition
- Authors: Huanzhang Dou, Pengyi Zhang, Wei Su, Yunlong Yu, Yining Lin, and Xi Li
- Abstract summary: Gait is one of the most promising biometrics that aims to identify pedestrians from their walking patterns.
prevailing methods are susceptible to confounders, resulting in the networks hardly focusing on the regions that reflect effective walking patterns.
We propose a Generative Counterfactual Intervention framework, dubbed GaitGCI, consisting of Counterfactual Intervention Learning (CIL) and Diversity-Constrained Dynamic Convolution (DCDC)
- Score: 15.348742723718964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gait is one of the most promising biometrics that aims to identify
pedestrians from their walking patterns. However, prevailing methods are
susceptible to confounders, resulting in the networks hardly focusing on the
regions that reflect effective walking patterns. To address this fundamental
problem in gait recognition, we propose a Generative Counterfactual
Intervention framework, dubbed GaitGCI, consisting of Counterfactual
Intervention Learning (CIL) and Diversity-Constrained Dynamic Convolution
(DCDC). CIL eliminates the impacts of confounders by maximizing the likelihood
difference between factual/counterfactual attention while DCDC adaptively
generates sample-wise factual/counterfactual attention to efficiently perceive
the sample-wise properties. With matrix decomposition and diversity constraint,
DCDC guarantees the model to be efficient and effective. Extensive experiments
indicate that proposed GaitGCI: 1) could effectively focus on the
discriminative and interpretable regions that reflect gait pattern; 2) is
model-agnostic and could be plugged into existing models to improve performance
with nearly no extra cost; 3) efficiently achieves state-of-the-art performance
on arbitrary scenarios (in-the-lab and in-the-wild).
Related papers
- Targeted Cause Discovery with Data-Driven Learning [66.86881771339145]
We propose a novel machine learning approach for inferring causal variables of a target variable from observations.
We employ a neural network trained to identify causality through supervised learning on simulated data.
Empirical results demonstrate the effectiveness of our method in identifying causal relationships within large-scale gene regulatory networks.
arXiv Detail & Related papers (2024-08-29T02:21:11Z) - Improving Point-based Crowd Counting and Localization Based on Auxiliary Point Guidance [59.71186244597394]
We introduce an effective approach to stabilize the proposal-target matching in point-based methods.
We propose Auxiliary Point Guidance (APG) to provide clear and effective guidance for proposal selection and optimization.
We also develop Implicit Feature Interpolation (IFI) to enable adaptive feature extraction in diverse crowd scenarios.
arXiv Detail & Related papers (2024-05-17T07:23:27Z) - A General Causal Inference Framework for Cross-Sectional Observational Data [0.4972323953932129]
General Causal Inference (GCI) framework specifically designed for cross-sectional observational data.
This paper proposes a GCI framework specifically designed for cross-sectional observational data.
arXiv Detail & Related papers (2024-04-28T14:26:27Z) - ACE : Off-Policy Actor-Critic with Causality-Aware Entropy Regularization [52.5587113539404]
We introduce a causality-aware entropy term that effectively identifies and prioritizes actions with high potential impacts for efficient exploration.
Our proposed algorithm, ACE: Off-policy Actor-critic with Causality-aware Entropy regularization, demonstrates a substantial performance advantage across 29 diverse continuous control tasks.
arXiv Detail & Related papers (2024-02-22T13:22:06Z) - Model Stealing Attack against Graph Classification with Authenticity, Uncertainty and Diversity [80.16488817177182]
GNNs are vulnerable to the model stealing attack, a nefarious endeavor geared towards duplicating the target model via query permissions.
We introduce three model stealing attacks to adapt to different actual scenarios.
arXiv Detail & Related papers (2023-12-18T05:42:31Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Boosting the Generalization Capability in Cross-Domain Few-shot Learning
via Noise-enhanced Supervised Autoencoder [23.860842627883187]
We teach the model to capture broader variations of the feature distributions with a novel noise-enhanced supervised autoencoder (NSAE)
NSAE trains the model by jointly reconstructing inputs and predicting the labels of inputs as well as their reconstructed pairs.
We also take advantage of NSAE structure and propose a two-step fine-tuning procedure that achieves better adaption and improves classification performance in the target domain.
arXiv Detail & Related papers (2021-08-11T04:45:56Z) - Dynamic Domain Adaptation for Efficient Inference [12.713628738434881]
Domain adaptation (DA) enables knowledge transfer from a labeled source domain to an unlabeled target domain.
Most prior DA approaches leverage complicated and powerful deep neural networks to improve the adaptation capacity.
We propose a dynamic domain adaptation (DDA) framework, which can simultaneously achieve efficient target inference in low-resource scenarios.
arXiv Detail & Related papers (2021-03-26T08:53:16Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
We introduce an unsupervised domain adaptation approach for person re-identification.
Experimental results show that the proposed ktCUDA and SHRED approach achieves an average improvement of +5.7 mAP in re-identification performance.
arXiv Detail & Related papers (2020-01-14T17:43:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.