CASC-AI: Consensus-aware Self-corrective Learning for Noise Cell Segmentation
- URL: http://arxiv.org/abs/2502.07302v2
- Date: Mon, 10 Mar 2025 20:58:06 GMT
- Title: CASC-AI: Consensus-aware Self-corrective Learning for Noise Cell Segmentation
- Authors: Ruining Deng, Yihe Yang, David J. Pisapia, Benjamin Liechty, Junchao Zhu, Juming Xiong, Junlin Guo, Zhengyi Lu, Jiacheng Wang, Xing Yao, Runxuan Yu, Rendong Zhang, Gaurav Rudravaram, Mengmeng Yin, Pinaki Sarder, Haichun Yang, Yuankai Huo, Mert R. Sabuncu,
- Abstract summary: Multi-class cell segmentation in high-resolution gigapixel whole slide images is crucial for various clinical applications.<n>Recent efforts have democratized this process by involving lay annotators without medical expertise.<n>We propose a consensus-aware self-corrective AI agent that leverages the Consensus Matrix to guide its learning process.
- Score: 8.50335568530725
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-class cell segmentation in high-resolution gigapixel whole slide images (WSIs) is crucial for various clinical applications. However, training such models typically requires labor-intensive, pixel-wise annotations by domain experts. Recent efforts have democratized this process by involving lay annotators without medical expertise. However, conventional non-corrective approaches struggle to handle annotation noise adaptively because they lack mechanisms to mitigate false positives (FP) and false negatives (FN) at both the image-feature and pixel levels. In this paper, we propose a consensus-aware self-corrective AI agent that leverages the Consensus Matrix to guide its learning process. The Consensus Matrix defines regions where both the AI and annotators agree on cell and non-cell annotations, which are prioritized with stronger supervision. Conversely, areas of disagreement are adaptively weighted based on their feature similarity to high-confidence consensus regions, with more similar regions receiving greater attention. Additionally, contrastive learning is employed to separate features of noisy regions from those of reliable consensus regions by maximizing their dissimilarity. This paradigm enables the model to iteratively refine noisy labels, enhancing its robustness. Validated on one real-world lay-annotated cell dataset and two reasoning-guided simulated noisy datasets, our method demonstrates improved segmentation performance, effectively correcting FP and FN errors and showcasing its potential for training robust models on noisy datasets. The official implementation and cell annotations are publicly available at https://github.com/ddrrnn123/CASC-AI.
Related papers
- Minding Fuzzy Regions: A Data-driven Alternating Learning Paradigm for Stable Lesion Segmentation [10.40198497843647]
Some lesion regions in medical images have unclear boundaries, irregular shapes, and small tissue density differences, leading to label ambiguity.
The existing model treats all data equally without taking quality differences into account in the training process.
A data-driven alternating learning paradigm is proposed to optimize the model's training process, achieving stable and high-precision segmentation.
arXiv Detail & Related papers (2025-03-14T07:08:22Z) - DenseVLM: A Retrieval and Decoupled Alignment Framework for Open-Vocabulary Dense Prediction [80.67150791183126]
We propose DenseVLM, a framework designed to learn unbiased region-language alignment from powerful pre-trained VLM representations.<n>We show that DenseVLM can be seamlessly integrated into open-vocabulary object detection and image segmentation tasks, leading to notable performance improvements.
arXiv Detail & Related papers (2024-12-09T06:34:23Z) - Orthogonal Subspace Decomposition for Generalizable AI-Generated Image Detection [58.87142367781417]
A naively trained detector tends to favor overfitting to the limited and monotonous fake patterns, causing the feature space to become highly constrained and low-ranked.<n>One potential remedy is incorporating the pre-trained knowledge within the vision foundation models to expand the feature space.<n>By freezing the principal components and adapting only the remained components, we preserve the pre-trained knowledge while learning forgery-related patterns.
arXiv Detail & Related papers (2024-11-23T19:10:32Z) - SiamSeg: Self-Training with Contrastive Learning for Unsupervised Domain Adaptation Semantic Segmentation in Remote Sensing [13.549403813487022]
Unsupervised domain adaptation (UDA) enables models to learn from unlabeled target domain data while leveraging labeled source domain data.<n>We propose integrating contrastive learning into UDA, enhancing the model's ability to capture semantic information in the target domain.<n>Our method, SimSeg, outperforms existing approaches, achieving state-of-the-art results.
arXiv Detail & Related papers (2024-10-17T11:59:39Z) - A Noise and Edge extraction-based dual-branch method for Shallowfake and Deepfake Localization [15.647035299476894]
We develop a dual-branch model that integrates manually designed feature noise with conventional CNN features.
The model is superior in comparison and easily outperforms the existing state-of-the-art (SoTA) models.
arXiv Detail & Related papers (2024-09-02T02:18:34Z) - Sensitivity-Informed Augmentation for Robust Segmentation [21.609070498399863]
Internal noises such as variations in camera quality or lens distortion can affect the performance of segmentation models.
We present an efficient, adaptable, and gradient-free method to enhance the robustness of learning-based segmentation models across training.
arXiv Detail & Related papers (2024-06-03T15:25:45Z) - Progressive Feature Self-reinforcement for Weakly Supervised Semantic
Segmentation [55.69128107473125]
We propose a single-stage approach for Weakly Supervised Semantic (WSSS) with image-level labels.
We adaptively partition the image content into deterministic regions (e.g., confident foreground and background) and uncertain regions (e.g., object boundaries and misclassified categories) for separate processing.
Building upon this, we introduce a complementary self-enhancement method that constrains the semantic consistency between these confident regions and an augmented image with the same class labels.
arXiv Detail & Related papers (2023-12-14T13:21:52Z) - Semantic Connectivity-Driven Pseudo-labeling for Cross-domain
Segmentation [89.41179071022121]
Self-training is a prevailing approach in cross-domain semantic segmentation.
We propose a novel approach called Semantic Connectivity-driven pseudo-labeling.
This approach formulates pseudo-labels at the connectivity level and thus can facilitate learning structured and low-noise semantics.
arXiv Detail & Related papers (2023-12-11T12:29:51Z) - Unsupervised Domain Adaptation for Semantic Segmentation with Pseudo
Label Self-Refinement [9.69089112870202]
We propose an auxiliary pseudo-label refinement network (PRN) for online refining of the pseudo labels and also localizing the pixels whose predicted labels are likely to be noisy.
We evaluate our approach on benchmark datasets with three different domain shifts, and our approach consistently performs significantly better than the previous state-of-the-art methods.
arXiv Detail & Related papers (2023-10-25T20:31:07Z) - Generalized Face Forgery Detection via Adaptive Learning for Pre-trained Vision Transformer [54.32283739486781]
We present a textbfForgery-aware textbfAdaptive textbfVision textbfTransformer (FA-ViT) under the adaptive learning paradigm.
FA-ViT achieves 93.83% and 78.32% AUC scores on Celeb-DF and DFDC datasets in the cross-dataset evaluation.
arXiv Detail & Related papers (2023-09-20T06:51:11Z) - Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
segmentation models can be vulnerable to adversarial perturbations, which hinders their use in critical-decision systems like healthcare or autonomous driving.
Recently, randomized smoothing has been proposed to certify segmentation predictions by adding Gaussian noise to the input to obtain theoretical guarantees.
In this paper, we address the problem of certifying segmentation prediction using a combination of randomized smoothing and diffusion models.
arXiv Detail & Related papers (2023-06-16T16:30:39Z) - Adversarial Dual-Student with Differentiable Spatial Warping for
Semi-Supervised Semantic Segmentation [70.2166826794421]
We propose a differentiable geometric warping to conduct unsupervised data augmentation.
We also propose a novel adversarial dual-student framework to improve the Mean-Teacher.
Our solution significantly improves the performance and state-of-the-art results are achieved on both datasets.
arXiv Detail & Related papers (2022-03-05T17:36:17Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
Several multimodal representation learning approaches have been proposed that jointly represent image and text.
These approaches achieve superior performance by capturing high-level semantic information from large-scale multimodal pretraining.
We propose unbiased Dense Contrastive Visual-Linguistic Pretraining to replace the region regression and classification with cross-modality region contrastive learning.
arXiv Detail & Related papers (2021-09-24T07:20:13Z) - Weakly supervised segmentation with cross-modality equivariant
constraints [7.757293476741071]
Weakly supervised learning has emerged as an appealing alternative to alleviate the need for large labeled datasets in semantic segmentation.
We present a novel learning strategy that leverages self-supervision in a multi-modal image scenario to significantly enhance original CAMs.
Our approach outperforms relevant recent literature under the same learning conditions.
arXiv Detail & Related papers (2021-04-06T13:14:20Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.