SDR-GAIN: A High Real-Time Occluded Pedestrian Pose Completion Method
for Autonomous Driving
- URL: http://arxiv.org/abs/2306.03538v4
- Date: Fri, 25 Aug 2023 07:34:42 GMT
- Title: SDR-GAIN: A High Real-Time Occluded Pedestrian Pose Completion Method
for Autonomous Driving
- Authors: Honghao Fu, Libo Sun, Yilang Shen, Yiwen Wu
- Abstract summary: We present a novel pedestrian pose keypoint completion method called the separation and dimensionality reduction-based generative adversarial imputation networks (SDR-GAIN)
The SDR-GAIN algorithm exhibits a remarkably short running time of approximately 0.4ms and boasts exceptional real-time performance.
- Score: 3.3113002380233447
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To mitigate the challenges arising from partial occlusion in human pose
keypoint based pedestrian detection methods , we present a novel pedestrian
pose keypoint completion method called the separation and dimensionality
reduction-based generative adversarial imputation networks (SDR-GAIN) .
Firstly, we utilize OpenPose to estimate pedestrian poses in images. Then, we
isolate the head and torso keypoints of pedestrians with incomplete keypoints
due to occlusion or other factors and perform dimensionality reduction to
enhance features and further unify feature distribution. Finally, we introduce
two generative models based on the generative adversarial networks (GAN)
framework, which incorporate Huber loss, residual structure, and L1
regularization to generate missing parts of the incomplete head and torso pose
keypoints of partially occluded pedestrians, resulting in pose completion. Our
experiments on MS COCO and JAAD datasets demonstrate that SDR-GAIN outperforms
basic GAIN framework, interpolation methods PCHIP and MAkima, machine learning
methods k-NN and MissForest in terms of pose completion task. Furthermore, the
SDR-GAIN algorithm exhibits a remarkably short running time of approximately
0.4ms and boasts exceptional real-time performance. As such, it holds
significant practical value in the domain of autonomous driving, wherein high
system response speeds are of paramount importance. Specifically, it excels at
rapidly and precisely capturing human pose key points, thus enabling an
expanded range of applications for pedestrian detection tasks based on pose key
points, including but not limited to pedestrian behavior recognition and
prediction.
Related papers
- Towards Cross-View-Consistent Self-Supervised Surround Depth Estimation [9.569646683579899]
Self-Supervised Surround Depth Estimation from consecutive images offers an economical alternative.
Previous SSSDE methods have proposed different mechanisms to fuse information across images, but few of them explicitly consider the cross-view constraints.
This paper proposes an efficient and consistent pose estimation design and two loss functions to enhance cross-view consistency for SSSDE.
arXiv Detail & Related papers (2024-07-04T16:29:05Z) - Open-Vocabulary Animal Keypoint Detection with Semantic-feature Matching [74.75284453828017]
Open-Vocabulary Keypoint Detection (OVKD) task is innovatively designed to use text prompts for identifying arbitrary keypoints across any species.
We have developed a novel framework named Open-Vocabulary Keypoint Detection with Semantic-feature Matching (KDSM)
This framework combines vision and language models, creating an interplay between language features and local keypoint visual features.
arXiv Detail & Related papers (2023-10-08T07:42:41Z) - MDPose: Real-Time Multi-Person Pose Estimation via Mixture Density Model [27.849059115252008]
We propose a novel framework of single-stage instance-aware pose estimation by modeling the joint distribution of human keypoints.
Our MDPose achieves state-of-the-art performance by successfully learning the high-dimensional joint distribution of human keypoints.
arXiv Detail & Related papers (2023-02-17T08:29:33Z) - 2D Human Pose Estimation with Explicit Anatomical Keypoints Structure
Constraints [15.124606575017621]
We present a novel 2D human pose estimation method with explicit anatomical keypoints structure constraints.
Our proposed model can be plugged in the most existing bottom-up or top-down human pose estimation methods.
Our methods perform favorably against the most existing bottom-up and top-down human pose estimation methods.
arXiv Detail & Related papers (2022-12-05T11:01:43Z) - AlphaPose: Whole-Body Regional Multi-Person Pose Estimation and Tracking
in Real-Time [47.19339667836196]
We present AlphaPose, a system that can perform accurate whole-body pose estimation and tracking jointly while running in realtime.
We show a significant improvement over current state-of-the-art methods in both speed and accuracy on COCO-wholebody, COCO, PoseTrack, and our proposed Halpe-FullBody pose estimation dataset.
arXiv Detail & Related papers (2022-11-07T09:15:38Z) - Direct Dense Pose Estimation [138.56533828316833]
Dense human pose estimation is the problem of learning dense correspondences between RGB images and the surfaces of human bodies.
Prior dense pose estimation methods are all based on Mask R-CNN framework and operate in a top-down manner of first attempting to identify a bounding box for each person.
We propose a novel alternative method for solving the dense pose estimation problem, called Direct Dense Pose (DDP)
arXiv Detail & Related papers (2022-04-04T06:14:38Z) - Quality-aware Part Models for Occluded Person Re-identification [77.24920810798505]
Occlusion poses a major challenge for person re-identification (ReID)
Existing approaches typically rely on outside tools to infer visible body parts, which may be suboptimal in terms of both computational efficiency and ReID accuracy.
We propose a novel method named Quality-aware Part Models (QPM) for occlusion-robust ReID.
arXiv Detail & Related papers (2022-01-01T03:51:09Z) - Rethinking Keypoint Representations: Modeling Keypoints and Poses as
Objects for Multi-Person Human Pose Estimation [79.78017059539526]
We propose a new heatmap-free keypoint estimation method in which individual keypoints and sets of spatially related keypoints (i.e., poses) are modeled as objects within a dense single-stage anchor-based detection framework.
In experiments, we observe that KAPAO is significantly faster and more accurate than previous methods, which suffer greatly from heatmap post-processing.
Our large model, KAPAO-L, achieves an AP of 70.6 on the Microsoft COCO Keypoints validation set without test-time augmentation.
arXiv Detail & Related papers (2021-11-16T15:36:44Z) - Locally Aware Piecewise Transformation Fields for 3D Human Mesh
Registration [67.69257782645789]
We propose piecewise transformation fields that learn 3D translation vectors to map any query point in posed space to its correspond position in rest-pose space.
We show that fitting parametric models with poses by our network results in much better registration quality, especially for extreme poses.
arXiv Detail & Related papers (2021-04-16T15:16:09Z) - Progressive Self-Guided Loss for Salient Object Detection [102.35488902433896]
We present a progressive self-guided loss function to facilitate deep learning-based salient object detection in images.
Our framework takes advantage of adaptively aggregated multi-scale features to locate and detect salient objects effectively.
arXiv Detail & Related papers (2021-01-07T07:33:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.