Unsupervised Domain Adaptation for Occlusion Resilient Human Pose Estimation
- URL: http://arxiv.org/abs/2501.02773v1
- Date: Mon, 06 Jan 2025 05:30:37 GMT
- Title: Unsupervised Domain Adaptation for Occlusion Resilient Human Pose Estimation
- Authors: Arindam Dutta, Sarosij Bose, Saketh Bachu, Calvin-Khang Ta, Konstantinos Karydis, Amit K. Roy-Chowdhury,
- Abstract summary: Occlusions are a significant challenge to human pose estimation algorithms.
We propose OR-POSE: Unsupervised Domain Adaptation for Occlusion Resilient Human POSE Estimation.
- Score: 23.0839810713682
- License:
- Abstract: Occlusions are a significant challenge to human pose estimation algorithms, often resulting in inaccurate and anatomically implausible poses. Although current occlusion-robust human pose estimation algorithms exhibit impressive performance on existing datasets, their success is largely attributed to supervised training and the availability of additional information, such as multiple views or temporal continuity. Furthermore, these algorithms typically suffer from performance degradation under distribution shifts. While existing domain adaptive human pose estimation algorithms address this bottleneck, they tend to perform suboptimally when the target domain images are occluded, a common occurrence in real-life scenarios. To address these challenges, we propose OR-POSE: Unsupervised Domain Adaptation for Occlusion Resilient Human POSE Estimation. OR-POSE is an innovative unsupervised domain adaptation algorithm which effectively mitigates domain shifts and overcomes occlusion challenges by employing the mean teacher framework for iterative pseudo-label refinement. Additionally, OR-POSE reinforces realistic pose prediction by leveraging a learned human pose prior which incorporates the anatomical constraints of humans in the adaptation process. Lastly, OR-POSE avoids overfitting to inaccurate pseudo labels generated from heavily occluded images by employing a novel visibility-based curriculum learning approach. This enables the model to gradually transition from training samples with relatively less occlusion to more challenging, heavily occluded samples. Extensive experiments show that OR-POSE outperforms existing analogous state-of-the-art algorithms by $\sim$ 7% on challenging occluded human pose estimation datasets.
Related papers
- Feature Attenuation of Defective Representation Can Resolve Incomplete Masking on Anomaly Detection [1.0358639819750703]
In unsupervised anomaly detection (UAD) research, it is necessary to develop a computationally efficient and scalable solution.
We revisit the reconstruction-by-inpainting approach and rethink to improve it by analyzing strengths and weaknesses.
We propose Feature Attenuation of Defective Representation (FADeR) that only employs two layers which attenuates feature information of anomaly reconstruction.
arXiv Detail & Related papers (2024-07-05T15:44:53Z) - Manifold-Aware Self-Training for Unsupervised Domain Adaptation on
Regressing 6D Object Pose [69.14556386954325]
Domain gap between synthetic and real data in visual regression is bridged in this paper via global feature alignment and local refinement.
Our method incorporates an explicit self-supervised manifold regularization, revealing consistent cumulative target dependency across domains.
Learning unified implicit neural functions to estimate relative direction and distance of targets to their nearest class bins aims to refine target classification predictions.
arXiv Detail & Related papers (2023-05-18T08:42:41Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
We introduce MRP-Net that constitutes a common deep network backbone with two output heads subscribing to two diverse configurations.
We derive suitable measures to quantify prediction uncertainty at both pose and joint level.
We present a comprehensive evaluation of the proposed approach and demonstrate state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2022-03-29T07:14:58Z) - Towards Accurate Cross-Domain In-Bed Human Pose Estimation [3.685548851716087]
Long-wavelength infrared (LWIR) modality based pose estimation algorithms overcome the aforementioned challenges.
We propose a novel learning strategy comprises of two-fold data augmentation to reduce the cross-domain discrepancy.
Our experiments and analysis show the effectiveness of our approach over multiple standard human pose estimation baselines.
arXiv Detail & Related papers (2021-10-07T15:54:46Z) - On the Practicality of Deterministic Epistemic Uncertainty [106.06571981780591]
deterministic uncertainty methods (DUMs) achieve strong performance on detecting out-of-distribution data.
It remains unclear whether DUMs are well calibrated and can seamlessly scale to real-world applications.
arXiv Detail & Related papers (2021-07-01T17:59:07Z) - Learning a Domain-Agnostic Visual Representation for Autonomous Driving
via Contrastive Loss [25.798361683744684]
Domain-Agnostic Contrastive Learning (DACL) is a two-stage unsupervised domain adaptation framework with cyclic adversarial training and contrastive loss.
Our proposed approach achieves better performance in the monocular depth estimation task compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-10T07:06:03Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space.
Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations.
arXiv Detail & Related papers (2020-12-03T10:17:30Z) - Adversarial Semantic Data Augmentation for Human Pose Estimation [96.75411357541438]
We propose Semantic Data Augmentation (SDA), a method that augments images by pasting segmented body parts with various semantic granularity.
We also propose Adversarial Semantic Data Augmentation (ASDA), which exploits a generative network to dynamiclly predict tailored pasting configuration.
State-of-the-art results are achieved on challenging benchmarks.
arXiv Detail & Related papers (2020-08-03T07:56:04Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
We introduce an unsupervised domain adaptation approach for person re-identification.
Experimental results show that the proposed ktCUDA and SHRED approach achieves an average improvement of +5.7 mAP in re-identification performance.
arXiv Detail & Related papers (2020-01-14T17:43:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.