CIN++: Enhancing Topological Message Passing
- URL: http://arxiv.org/abs/2306.03561v1
- Date: Tue, 6 Jun 2023 10:25:10 GMT
- Title: CIN++: Enhancing Topological Message Passing
- Authors: Lorenzo Giusti, Teodora Reu, Francesco Ceccarelli, Cristian Bodnar,
Pietro Li\`o
- Abstract summary: Graph Neural Networks (GNNs) have demonstrated remarkable success in learning from graph-structured data.
They face significant limitations in expressive power, struggling with long-range interactions and lacking a principled approach to modeling higher-order structures and group interactions.
We propose CIN++, an enhancement of the topological message passing scheme introduced in CINs.
- Score: 3.584867245855462
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have demonstrated remarkable success in learning
from graph-structured data. However, they face significant limitations in
expressive power, struggling with long-range interactions and lacking a
principled approach to modeling higher-order structures and group interactions.
Cellular Isomorphism Networks (CINs) recently addressed most of these
challenges with a message passing scheme based on cell complexes. Despite their
advantages, CINs make use only of boundary and upper messages which do not
consider a direct interaction between the rings present in the underlying
complex. Accounting for these interactions might be crucial for learning
representations of many real-world complex phenomena such as the dynamics of
supramolecular assemblies, neural activity within the brain, and gene
regulation processes. In this work, we propose CIN++, an enhancement of the
topological message passing scheme introduced in CINs. Our message passing
scheme accounts for the aforementioned limitations by letting the cells to
receive also lower messages within each layer. By providing a more
comprehensive representation of higher-order and long-range interactions, our
enhanced topological message passing scheme achieves state-of-the-art results
on large-scale and long-range chemistry benchmarks.
Related papers
- Topological Deep Learning with State-Space Models: A Mamba Approach for Simplicial Complexes [4.787059527893628]
We propose a novel architecture designed to operate with simplicial complexes, utilizing the Mamba state-space model as its backbone.
Our approach generates sequences for the nodes based on the neighboring cells, enabling direct communication between all higher-order structures, regardless of their rank.
arXiv Detail & Related papers (2024-09-18T14:49:25Z) - Topological Neural Networks: Mitigating the Bottlenecks of Graph Neural
Networks via Higher-Order Interactions [1.994307489466967]
This work starts with a theoretical framework to reveal the impact of network's width, depth, and graph topology on the over-squashing phenomena in message-passing neural networks.
The work drifts towards, higher-order interactions and multi-relational inductive biases via Topological Neural Networks.
Inspired by Graph Attention Networks, two topological attention networks are proposed: Simplicial and Cell Attention Networks.
arXiv Detail & Related papers (2024-02-10T08:26:06Z) - Adaptive Message Passing: A General Framework to Mitigate Oversmoothing, Oversquashing, and Underreaching [23.487431014596556]
Long-range interactions are essential for the correct description of complex systems in many scientific fields.
Most deep graph networks cannot really model long-range dependencies due to intrinsic limitations of (synchronous) message passing.
This work proposes a general framework that learns to mitigate these limitations.
arXiv Detail & Related papers (2023-12-27T12:49:27Z) - Message Intercommunication for Inductive Relation Reasoning [49.731293143079455]
We develop a novel inductive relation reasoning model called MINES.
We introduce a Message Intercommunication mechanism on the Neighbor-Enhanced Subgraph.
Our experiments show that MINES outperforms existing state-of-the-art models.
arXiv Detail & Related papers (2023-05-23T13:51:46Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
Heterogeneous graph neural networks (HGNNs) have powerful capability to embed rich structural and semantic information of a heterogeneous graph into node representations.
Existing HGNNs inherit many mechanisms from graph neural networks (GNNs) over homogeneous graphs, especially the attention mechanism and the multi-layer structure.
This paper conducts an in-depth and detailed study of these mechanisms and proposes Simple and Efficient Heterogeneous Graph Neural Network (SeHGNN)
arXiv Detail & Related papers (2022-07-06T10:01:46Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - DPGNN: Dual-Perception Graph Neural Network for Representation Learning [21.432960458513826]
Graph neural networks (GNNs) have drawn increasing attention in recent years and achieved remarkable performance in many graph-based tasks.
Most existing GNNs are based on the message-passing paradigm to iteratively aggregate neighborhood information in a single topology space.
We present a novel message-passing paradigm, based on the properties of multi-step message source, node-specific message output, and multi-space message interaction.
arXiv Detail & Related papers (2021-10-15T05:47:26Z) - Weisfeiler and Lehman Go Cellular: CW Networks [3.0017241250121383]
Graph Neural Networks (GNNs) are limited in their expressive power, struggle with long-range interactions and lack a principled way to model higher-order structures.
We extend recent theoretical results on SCs to regular Cell Complexes, topological objects that flexibly subsume SCs and graphs.
We show that this generalisation provides a powerful set of graph lifting'' transformations, each leading to a unique message passing procedure.
arXiv Detail & Related papers (2021-06-23T17:59:16Z) - Counting Substructures with Higher-Order Graph Neural Networks:
Possibility and Impossibility Results [58.277290855841976]
We study tradeoffs of computational cost and expressive power of Graph Neural Networks (GNNs)
We show that a new model can count subgraphs of size $k$, and thereby overcomes a known limitation of low-order GNNs.
In several cases, the proposed algorithm can greatly reduce computational complexity compared to the existing higher-order $k$-GNNs.
arXiv Detail & Related papers (2020-12-06T03:42:54Z) - GCN for HIN via Implicit Utilization of Attention and Meta-paths [104.24467864133942]
Heterogeneous information network (HIN) embedding aims to map the structure and semantic information in a HIN to distributed representations.
We propose a novel neural network method via implicitly utilizing attention and meta-paths.
We first use the multi-layer graph convolutional network (GCN) framework, which performs a discriminative aggregation at each layer.
We then give an effective relaxation and improvement via introducing a new propagation operation which can be separated from aggregation.
arXiv Detail & Related papers (2020-07-06T11:09:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.