CUE: An Uncertainty Interpretation Framework for Text Classifiers Built
on Pre-Trained Language Models
- URL: http://arxiv.org/abs/2306.03598v1
- Date: Tue, 6 Jun 2023 11:37:46 GMT
- Title: CUE: An Uncertainty Interpretation Framework for Text Classifiers Built
on Pre-Trained Language Models
- Authors: Jiazheng Li, Zhaoyue Sun, Bin Liang, Lin Gui, Yulan He
- Abstract summary: We propose a novel framework, called CUE, which aims to interpret uncertainties inherent in the predictions of PLM-based models.
By comparing the difference in predictive uncertainty between the perturbed and the original text representations, we are able to identify the latent dimensions responsible for uncertainty.
- Score: 28.750894873827068
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text classifiers built on Pre-trained Language Models (PLMs) have achieved
remarkable progress in various tasks including sentiment analysis, natural
language inference, and question-answering. However, the occurrence of
uncertain predictions by these classifiers poses a challenge to their
reliability when deployed in practical applications. Much effort has been
devoted to designing various probes in order to understand what PLMs capture.
But few studies have delved into factors influencing PLM-based classifiers'
predictive uncertainty. In this paper, we propose a novel framework, called
CUE, which aims to interpret uncertainties inherent in the predictions of
PLM-based models. In particular, we first map PLM-encoded representations to a
latent space via a variational auto-encoder. We then generate text
representations by perturbing the latent space which causes fluctuation in
predictive uncertainty. By comparing the difference in predictive uncertainty
between the perturbed and the original text representations, we are able to
identify the latent dimensions responsible for uncertainty and subsequently
trace back to the input features that contribute to such uncertainty. Our
extensive experiments on four benchmark datasets encompassing linguistic
acceptability classification, emotion classification, and natural language
inference show the feasibility of our proposed framework. Our source code is
available at: https://github.com/lijiazheng99/CUE.
Related papers
- On Uncertainty In Natural Language Processing [2.5076643086429993]
This thesis studies how uncertainty in natural language processing can be characterized from a linguistic, statistical and neural perspective.
We propose a method for calibrated sampling in natural language generation based on non-exchangeable conformal prediction.
Lastly, we develop an approach to quantify confidence in large black-box language models using auxiliary predictors.
arXiv Detail & Related papers (2024-10-04T14:08:02Z) - CLUE: Concept-Level Uncertainty Estimation for Large Language Models [49.92690111618016]
We propose a novel framework for Concept-Level Uncertainty Estimation for Large Language Models (LLMs)
We leverage LLMs to convert output sequences into concept-level representations, breaking down sequences into individual concepts and measuring the uncertainty of each concept separately.
We conduct experiments to demonstrate that CLUE can provide more interpretable uncertainty estimation results compared with sentence-level uncertainty.
arXiv Detail & Related papers (2024-09-04T18:27:12Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Uncertainty Quantification for In-Context Learning of Large Language Models [52.891205009620364]
In-context learning has emerged as a groundbreaking ability of Large Language Models (LLMs)
We propose a novel formulation and corresponding estimation method to quantify both types of uncertainties.
The proposed method offers an unsupervised way to understand the prediction of in-context learning in a plug-and-play fashion.
arXiv Detail & Related papers (2024-02-15T18:46:24Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
In large language models (LLMs), identifying sources of uncertainty is an important step toward improving reliability, trustworthiness, and interpretability.
In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarification ensembling.
Our approach generates a set of clarifications for the input, feeds them into an LLM, and ensembles the corresponding predictions.
arXiv Detail & Related papers (2023-11-15T05:58:35Z) - Prototype-based Aleatoric Uncertainty Quantification for Cross-modal
Retrieval [139.21955930418815]
Cross-modal Retrieval methods build similarity relations between vision and language modalities by jointly learning a common representation space.
However, the predictions are often unreliable due to the Aleatoric uncertainty, which is induced by low-quality data, e.g., corrupt images, fast-paced videos, and non-detailed texts.
We propose a novel Prototype-based Aleatoric Uncertainty Quantification (PAU) framework to provide trustworthy predictions by quantifying the uncertainty arisen from the inherent data ambiguity.
arXiv Detail & Related papers (2023-09-29T09:41:19Z) - Explaining Language Models' Predictions with High-Impact Concepts [11.47612457613113]
We propose a complete framework for extending concept-based interpretability methods to NLP.
We optimize for features whose existence causes the output predictions to change substantially.
Our method achieves superior results on predictive impact, usability, and faithfulness compared to the baselines.
arXiv Detail & Related papers (2023-05-03T14:48:27Z) - A Latent-Variable Model for Intrinsic Probing [93.62808331764072]
We propose a novel latent-variable formulation for constructing intrinsic probes.
We find empirical evidence that pre-trained representations develop a cross-lingually entangled notion of morphosyntax.
arXiv Detail & Related papers (2022-01-20T15:01:12Z) - Explaining Prediction Uncertainty of Pre-trained Language Models by
Detecting Uncertain Words in Inputs [21.594361495948316]
This paper pushes a step further on explaining uncertain predictions of post-calibrated pre-trained language models.
We adapt two perturbation-based post-hoc interpretation methods, Leave-one-out and Sampling Shapley, to identify words in inputs that cause the uncertainty in predictions.
arXiv Detail & Related papers (2022-01-11T02:04:50Z) - More Than Words: Towards Better Quality Interpretations of Text
Classifiers [16.66535643383862]
We show that token-based interpretability, while being a convenient first choice given the input interfaces of the ML models, is not the most effective one in all situations.
We show that higher-level feature attributions offer several advantages: 1) they are more robust as measured by the randomization tests, 2) they lead to lower variability when using approximation-based methods like SHAP, and 3) they are more intelligible to humans in situations where the linguistic coherence resides at a higher level.
arXiv Detail & Related papers (2021-12-23T10:18:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.