論文の概要: TestLab: An Intelligent Automated Software Testing Framework
- arxiv url: http://arxiv.org/abs/2306.03602v1
- Date: Tue, 6 Jun 2023 11:45:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-07 15:44:59.925555
- Title: TestLab: An Intelligent Automated Software Testing Framework
- Title(参考訳): testlab: インテリジェントな自動ソフトウェアテスティングフレームワーク
- Authors: Tiago Dias, Arthur Batista, Eva Maia and Isabel Pra\c{c}a
- Abstract要約: TestLabは、一連のテストメソッドを収集し、人工知能を使ってそれらを自動化しようとする自動ソフトウェアテストフレームワークである。
最初の2つのモジュールは、異なる視点から脆弱性を特定することを目的としており、3番目のモジュールは、テストケースを自動的に生成することで、従来の自動ソフトウェアテストを強化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The prevalence of software systems has become an integral part of modern-day
living. Software usage has increased significantly, leading to its growth in
both size and complexity. Consequently, software development is becoming a more
time-consuming process. In an attempt to accelerate the development cycle, the
testing phase is often neglected, leading to the deployment of flawed systems
that can have significant implications on the users daily activities. This work
presents TestLab, an intelligent automated software testing framework that
attempts to gather a set of testing methods and automate them using Artificial
Intelligence to allow continuous testing of software systems at multiple levels
from different scopes, ranging from developers to end-users. The tool consists
of three modules, each serving a distinct purpose. The first two modules aim to
identify vulnerabilities from different perspectives, while the third module
enhances traditional automated software testing by automatically generating
test cases through source code analysis.
- Abstract(参考訳): ソフトウェアシステムの普及は、現代の生活において不可欠な部分となっている。
ソフトウェアの使用量は大幅に増加し、サイズと複雑さの両方が増加した。
その結果、ソフトウェア開発はより時間を要するプロセスになっています。
開発サイクルを加速しようとすると、テストフェーズは無視されることが多く、欠陥のあるシステムのデプロイがユーザの日々のアクティビティに重大な影響を与えます。
この作業では、一連のテストメソッドを収集し、人工知能を使って自動化しようとするインテリジェントな自動ソフトウェアテストフレームワークであるTestLabを紹介し、開発者からエンドユーザまで、さまざまなスコープからソフトウェアシステムの継続的テストを可能にする。
ツールは3つのモジュールで構成され、それぞれが別々の目的を果たす。
最初の2つのモジュールは異なる視点から脆弱性を特定することを目的としており、3番目のモジュールはソースコード解析を通じてテストケースを自動的に生成することで、従来の自動ソフトウェアテストを強化する。
関連論文リスト
- Commit0: Library Generation from Scratch [77.38414688148006]
Commit0は、AIエージェントにスクラッチからライブラリを書くよう促すベンチマークである。
エージェントには、ライブラリのAPIを概説する仕様文書と、インタラクティブなユニットテストスイートが提供されている。
Commit0はまた、モデルが生成したコードに対して静的解析と実行フィードバックを受け取る、インタラクティブな環境も提供する。
論文 参考訳(メタデータ) (2024-12-02T18:11:30Z) - Disrupting Test Development with AI Assistants [1.024113475677323]
GitHub Copilot、ChatGPT、TabnineなどのジェネレーティブAI支援コーディングツールは、ソフトウェア開発を大きく変えた。
本稿では、これらのイノベーションが生産性とソフトウェア開発のメトリクスにどのように影響するかを分析する。
論文 参考訳(メタデータ) (2024-11-04T17:52:40Z) - AutoPT: How Far Are We from the End2End Automated Web Penetration Testing? [54.65079443902714]
LLMによって駆動されるPSMの原理に基づく自動浸透試験エージェントであるAutoPTを紹介する。
以上の結果から, AutoPT は GPT-4o ミニモデル上でのベースラインフレームワーク ReAct よりも優れていた。
論文 参考訳(メタデータ) (2024-11-02T13:24:30Z) - Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion? [60.84912551069379]
Code-Development Benchmark (Codev-Bench)は、細粒度で現実世界、リポジトリレベル、開発者中心の評価フレームワークです。
Codev-Agentは、リポジトリのクローリングを自動化し、実行環境を構築し、既存のユニットテストから動的呼び出しチェーンを抽出し、データ漏洩を避けるために新しいテストサンプルを生成するエージェントベースのシステムである。
論文 参考訳(メタデータ) (2024-10-02T09:11:10Z) - A System for Automated Unit Test Generation Using Large Language Models and Assessment of Generated Test Suites [1.4563527353943984]
大規模言語モデル(LLM)はソフトウェア開発の様々な側面に適用されている。
Javaプロジェクトのテストスイートを生成する自動化システムであるAgoneTestを紹介します。
論文 参考訳(メタデータ) (2024-08-14T23:02:16Z) - Harnessing the Power of LLMs: Automating Unit Test Generation for High-Performance Computing [7.3166218350585135]
ユニットテストは、品質を保証するために、ソフトウェア工学において不可欠です。
並列処理や高性能計算ソフトウェア、特に科学応用では広く使われていない。
本稿では,このようなソフトウェアを対象としたユニットテストの自動生成手法を提案する。
論文 参考訳(メタデータ) (2024-07-06T22:45:55Z) - A Comprehensive Study on Automated Testing with the Software Lifecycle [0.6144680854063939]
この研究は、自動テストがソフトウェアの品質を評価するのをいかに簡単にするか、手動テストと比べてどのように時間を節約するか、そして利点と欠点の観点から、それぞれのテストとどのように違うかを調べる。
ソフトウェアアプリケーションのテストプロセスは、単純化され、特定のテスト状況に合わせてカスタマイズされ、自動テストツールを使用してうまく実行される。
論文 参考訳(メタデータ) (2024-05-02T06:30:37Z) - Constraint-Guided Test Execution Scheduling: An Experience Report at ABB
Robotics [13.50507740574158]
我々は、大規模なテストリポジトリからテスト実行のスケジューリングを自動化することを目標とするDynTestと呼ばれるプロジェクトの結果を示す。
本稿では,ABBロボティクスにおけるテスト実行スケジューリングのための制約ベース最適化モデルの転送に成功した経験と教訓について報告する。
論文 参考訳(メタデータ) (2023-06-02T13:29:32Z) - MM-TTA: Multi-Modal Test-Time Adaptation for 3D Semantic Segmentation [104.48766162008815]
本稿では,3次元セマンティックセグメンテーションのためのテスト時間適応のマルチモーダル拡張を提案する。
マルチモダリティを最大限に活用できるフレームワークを設計するために、各モダリティは他のモダリティに対して正規化された自己監督信号を提供する。
正規化された擬似ラベルは、多数の多モードテスト時間適応シナリオにおいて安定した自己学習信号を生成する。
論文 参考訳(メタデータ) (2022-04-27T02:28:12Z) - Integrated Benchmarking and Design for Reproducible and Accessible
Evaluation of Robotic Agents [61.36681529571202]
本稿では,開発とベンチマークを統合した再現性ロボット研究の新しい概念について述べる。
このセットアップの中心的なコンポーネントの1つはDuckietown Autolabであり、これは比較的低コストで再現可能な標準化されたセットアップである。
本研究では,インフラを用いて実施した実験の再現性を解析し,ロボットのハードウェアや遠隔実験室間でのばらつきが低いことを示す。
論文 参考訳(メタデータ) (2020-09-09T15:31:29Z) - Beyond Accuracy: Behavioral Testing of NLP models with CheckList [66.42971817954806]
CheckList は NLP モデルをテストするためのタスクに依存しない方法論である。
CheckListには、包括的なテストのアイデアを促進する一般的な言語機能とテストタイプのマトリックスが含まれている。
ユーザスタディでは、CheckListのNLP実践者が2倍の数のテストを作成し、それのないユーザの約3倍のバグを発見しました。
論文 参考訳(メタデータ) (2020-05-08T15:48:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。