論文の概要: Training Language Models to Generate Quality Code with Program Analysis Feedback
- arxiv url: http://arxiv.org/abs/2505.22704v1
- Date: Wed, 28 May 2025 17:57:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-30 18:14:07.451271
- Title: Training Language Models to Generate Quality Code with Program Analysis Feedback
- Title(参考訳): プログラム解析フィードバックによる品質コード生成のための学習言語モデル
- Authors: Feng Yao, Zilong Wang, Liyuan Liu, Junxia Cui, Li Zhong, Xiaohan Fu, Haohui Mai, Vish Krishnan, Jianfeng Gao, Jingbo Shang,
- Abstract要約: 大規模言語モデル(LLM)によるコード生成は、ますます本番環境で採用されているが、コード品質の保証には失敗している。
実運用品質のコードを生成するためにLLMにインセンティブを与える強化学習フレームワークであるREALを提案する。
- 参考スコア(独自算出の注目度): 66.0854002147103
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Code generation with large language models (LLMs), often termed vibe coding, is increasingly adopted in production but fails to ensure code quality, particularly in security (e.g., SQL injection vulnerabilities) and maintainability (e.g., missing type annotations). Existing methods, such as supervised fine-tuning and rule-based post-processing, rely on labor-intensive annotations or brittle heuristics, limiting their scalability and effectiveness. We propose REAL, a reinforcement learning framework that incentivizes LLMs to generate production-quality code using program analysis-guided feedback. Specifically, REAL integrates two automated signals: (1) program analysis detecting security or maintainability defects and (2) unit tests ensuring functional correctness. Unlike prior work, our framework is prompt-agnostic and reference-free, enabling scalable supervision without manual intervention. Experiments across multiple datasets and model scales demonstrate that REAL outperforms state-of-the-art methods in simultaneous assessments of functionality and code quality. Our work bridges the gap between rapid prototyping and production-ready code, enabling LLMs to deliver both speed and quality.
- Abstract(参考訳): 大規模な言語モデル(LLM)によるコード生成は、ビブコーディングと呼ばれることが多いが、特にセキュリティ(SQLインジェクションの脆弱性など)と保守性(型アノテーションの欠如など)において、コード品質の確保には失敗している。
教師付き微調整やルールベースの後処理といった既存の手法は、労働集約的なアノテーションや不安定なヒューリスティックに依存し、スケーラビリティと有効性を制限している。
本稿では,プログラム解析誘導フィードバックを用いてLLMをインセンティブとして生成する強化学習フレームワークREALを提案する。
具体的には,(1)セキュリティや保守性欠陥を検出するプログラム解析と,(2)機能的正当性を保証するユニットテストの2つの自動信号を統合する。
従来の作業とは異なり、我々のフレームワークはプロンプト非依存で参照不要であり、手動による介入なしにスケーラブルな監視を可能にする。
複数のデータセットとモデルスケールにわたる実験により、REALは機能とコード品質の同時評価において最先端のメソッドよりも優れています。
私たちの作業は、高速プロトタイピングとプロダクション対応コードのギャップを埋め、LCMがスピードと品質の両方を提供できるようにします。
関連論文リスト
- Enhancing LLM Code Generation: A Systematic Evaluation of Multi-Agent Collaboration and Runtime Debugging for Improved Accuracy, Reliability, and Latency [0.0]
プログラミング活動の異なる構成や訓練パラダイムがコード生成の効率に与える影響について検討する。
私たちの発見は、堅牢なAI駆動型コーディングソリューションを求める組織に貴重な洞察を与えます。
論文 参考訳(メタデータ) (2025-05-04T14:44:27Z) - CodeIF: Benchmarking the Instruction-Following Capabilities of Large Language Models for Code Generation [24.090719826360342]
我々は、コード生成シナリオ内でタスク指向の命令に従うために、LLM(Large Language Models)の能力を評価するために設計された最初のベンチマークであるCodeIFを紹介する。
我々はLLMによる広範囲な実験を行い、これらの課題の要求を満たす上での強みと限界を分析した。
論文 参考訳(メタデータ) (2025-02-26T14:19:49Z) - Correctness Assessment of Code Generated by Large Language Models Using Internal Representations [4.32362000083889]
大規模言語モデル(LLM)が生成するコードの正確性を評価する新しいフレームワークであるOPENIAを紹介する。
我々の経験的分析により、これらの内部表現が潜時情報を符号化し、生成したコードの正しさと強く相関していることが明らかとなった。
OPENIAはベースラインモデルより一貫して優れており、高い精度、精度、リコール、F1スコアを実現し、スタンドアロンコード生成の最大2倍の改善を実現している。
論文 参考訳(メタデータ) (2025-01-22T15:04:13Z) - M2CVD: Enhancing Vulnerability Semantic through Multi-Model Collaboration for Code Vulnerability Detection [52.4455893010468]
大規模言語モデル(LLM)は、コード理解において強力な能力を持つが、微調整コストとセマンティックアライメントの問題により、プロジェクト固有の最適化が制限される。
CodeBERTのようなコードモデルは微調整が容易であるが、複雑なコード言語から脆弱性のセマンティクスを学ぶことはしばしば困難である。
本稿では,M2CVD(Multi-Model Collaborative Vulnerability Detection)手法を提案する。
論文 参考訳(メタデータ) (2024-06-10T00:05:49Z) - DeAL: Decoding-time Alignment for Large Language Models [59.63643988872571]
大規模言語モデル(LLM)は、現在、人間の好みに沿ったコンテンツを生成することが期待されている。
本稿では,報酬関数をカスタマイズ可能なフレームワークであるDeALを提案し,LLMのDetime Alignmentを可能にする。
実験の結果,粒度の細かいトレードオフでDeALを実現できること,アライメント目標への適合性の向上,LLMの残差の解消が可能であることがわかった。
論文 参考訳(メタデータ) (2024-02-05T06:12:29Z) - SALLM: Security Assessment of Generated Code [0.5137309756089941]
本稿では,セキュアなコードを体系的に生成する大規模言語モデルの能力をベンチマークするフレームワークであるSALLMについて述べる。
フレームワークには3つの主要なコンポーネントがある。セキュリティ中心のPythonプロンプトの新たなデータセット、生成されたコードを評価するための評価テクニック、セキュアなコード生成の観点からモデルのパフォーマンスを評価するための新しいメトリクスである。
論文 参考訳(メタデータ) (2023-11-01T22:46:31Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z) - CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning [92.36705236706678]
CodeRLは、事前訓練されたLMと深層強化学習によるプログラム合成タスクのための新しいフレームワークである。
推論中、我々は重要なサンプリング戦略を持つ新しい生成手順を導入する。
モデルバックボーンについては,CodeT5のエンコーダデコーダアーキテクチャを拡張し,学習目標を拡張した。
論文 参考訳(メタデータ) (2022-07-05T02:42:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。