Buying Information for Stochastic Optimization
- URL: http://arxiv.org/abs/2306.03607v1
- Date: Tue, 6 Jun 2023 11:50:09 GMT
- Title: Buying Information for Stochastic Optimization
- Authors: Mingchen Ma and Christos Tzamos
- Abstract summary: We study how to buy information for optimization and formulate this question as an online learning problem.
We show that this ratio is tight as the problem is equivalent to a robust generalization of the ski-rental problem, which we call super-martingale stopping.
We provide an $8$-competitive algorithm running in time that chooses actions and decides when to buy information about the underlying request.
- Score: 16.272461309965284
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Stochastic optimization is one of the central problems in Machine Learning
and Theoretical Computer Science. In the standard model, the algorithm is given
a fixed distribution known in advance. In practice though, one may acquire at a
cost extra information to make better decisions. In this paper, we study how to
buy information for stochastic optimization and formulate this question as an
online learning problem. Assuming the learner has an oracle for the original
optimization problem, we design a $2$-competitive deterministic algorithm and a
$e/(e-1)$-competitive randomized algorithm for buying information. We show that
this ratio is tight as the problem is equivalent to a robust generalization of
the ski-rental problem, which we call super-martingale stopping.
We also consider an adaptive setting where the learner can choose to buy
information after taking some actions for the underlying optimization problem.
We focus on the classic optimization problem, Min-Sum Set Cover, where the goal
is to quickly find an action that covers a given request drawn from a known
distribution. We provide an $8$-competitive algorithm running in polynomial
time that chooses actions and decides when to buy information about the
underlying request.
Related papers
- Semi-Bandit Learning for Monotone Stochastic Optimization [20.776114616154242]
We provide a generic online learning algorithm for a class of "monotone" problems.
Our framework applies to several fundamental problems in optimization such as prophet, Pandora's box knapsack, inequality matchings and submodular optimization.
arXiv Detail & Related papers (2023-12-24T07:46:37Z) - Best of Both Worlds Guarantees for Smoothed Online Quadratic Optimization [9.449153668916098]
We study the smoothed online optimization (SOQO) problem where, at each round $t$, a player plays an action $x_t in response to a quadratic hitting cost and an additional squared $ell$-norm cost for switching actions.
This problem class has strong connections to a wide range of application domains including smart grid management, adaptive control, and data center management.
We present a best-of-both-worlds algorithm that obtains a robust adversarial performance while simultaneously achieving a near-optimal performance.
arXiv Detail & Related papers (2023-10-31T22:59:23Z) - Efficient and Optimal Algorithms for Contextual Dueling Bandits under
Realizability [59.81339109121384]
We study the $K$ contextual dueling bandit problem, a sequential decision making setting in which the learner uses contextual information to make two decisions, but only observes emphpreference-based feedback suggesting that one decision was better than the other.
We provide a new algorithm that achieves the optimal regret rate for a new notion of best response regret, which is a strictly stronger performance measure than those considered in prior works.
arXiv Detail & Related papers (2021-11-24T07:14:57Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
In online algorithm selection (OAS), instances of an algorithmic problem class are presented to an agent one after another, and the agent has to quickly select a presumably best algorithm from a fixed set of candidate algorithms.
For decision problems such as satisfiability (SAT), quality typically refers to the algorithm's runtime.
In this work, we revisit multi-armed bandit algorithms for OAS and discuss their capability of dealing with the problem.
We adapt them towards runtime-oriented losses, allowing for partially censored data while keeping a space- and time-complexity independent of the time horizon.
arXiv Detail & Related papers (2021-09-13T18:10:52Z) - Doubly Adaptive Scaled Algorithm for Machine Learning Using Second-Order
Information [37.70729542263343]
We present a novel adaptive optimization algorithm for large-scale machine learning problems.
Our method dynamically adapts the direction and step-size.
Our methodology does not require a tedious tuning rate tuning.
arXiv Detail & Related papers (2021-09-11T06:39:50Z) - Bayesian Algorithm Execution: Estimating Computable Properties of
Black-box Functions Using Mutual Information [78.78486761923855]
In many real world problems, we want to infer some property of an expensive black-box function f, given a budget of T function evaluations.
We present a procedure, InfoBAX, that sequentially chooses queries that maximize mutual information with respect to the algorithm's output.
On these problems, InfoBAX uses up to 500 times fewer queries to f than required by the original algorithm.
arXiv Detail & Related papers (2021-04-19T17:22:11Z) - Double Coverage with Machine-Learned Advice [100.23487145400833]
We study the fundamental online $k$-server problem in a learning-augmented setting.
We show that our algorithm achieves for any k an almost optimal consistency-robustness tradeoff.
arXiv Detail & Related papers (2021-03-02T11:04:33Z) - Run2Survive: A Decision-theoretic Approach to Algorithm Selection based
on Survival Analysis [75.64261155172856]
survival analysis (SA) naturally supports censored data and offers appropriate ways to use such data for learning distributional models of algorithm runtime.
We leverage such models as a basis of a sophisticated decision-theoretic approach to algorithm selection, which we dub Run2Survive.
In an extensive experimental study with the standard benchmark ASlib, our approach is shown to be highly competitive and in many cases even superior to state-of-the-art AS approaches.
arXiv Detail & Related papers (2020-07-06T15:20:17Z) - First Steps Towards a Runtime Analysis When Starting With a Good
Solution [8.34061303235504]
In practical applications it may be possible to guess solutions that are better than random ones.
We show that different algorithms profit to a very different degree from a better initial solution.
This could suggest that evolutionary algorithms better exploiting good initial solutions are still to be found.
arXiv Detail & Related papers (2020-06-22T11:46:42Z) - Optimal Clustering from Noisy Binary Feedback [75.17453757892152]
We study the problem of clustering a set of items from binary user feedback.
We devise an algorithm with a minimal cluster recovery error rate.
For adaptive selection, we develop an algorithm inspired by the derivation of the information-theoretical error lower bounds.
arXiv Detail & Related papers (2019-10-14T09:18:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.