論文の概要: Emotion-Conditioned Melody Harmonization with Hierarchical Variational
Autoencoder
- arxiv url: http://arxiv.org/abs/2306.03718v3
- Date: Mon, 10 Jul 2023 09:27:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-11 21:56:47.961618
- Title: Emotion-Conditioned Melody Harmonization with Hierarchical Variational
Autoencoder
- Title(参考訳): 階層型変分オートエンコーダを用いた感情条件メロディ調和
- Authors: Shulei Ji and Xinyu Yang
- Abstract要約: LSTMに基づく階層的変分自動エンコーダ(LHVAE)を提案する。
LHVAEは、グローバル音楽とローカル音楽の特性をモデル化するために、潜伏変数と感情条件を異なるレベルで組み込んでいる。
目的実験の結果,提案モデルが他のLSTMモデルより優れていることが示された。
- 参考スコア(独自算出の注目度): 11.635877697635449
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing melody harmonization models have made great progress in improving
the quality of generated harmonies, but most of them ignored the emotions
beneath the music. Meanwhile, the variability of harmonies generated by
previous methods is insufficient. To solve these problems, we propose a novel
LSTM-based Hierarchical Variational Auto-Encoder (LHVAE) to investigate the
influence of emotional conditions on melody harmonization, while improving the
quality of generated harmonies and capturing the abundant variability of chord
progressions. Specifically, LHVAE incorporates latent variables and emotional
conditions at different levels (piece- and bar-level) to model the global and
local music properties. Additionally, we introduce an attention-based melody
context vector at each step to better learn the correspondence between melodies
and harmonies. Objective experimental results show that our proposed model
outperforms other LSTM-based models. Through subjective evaluation, we conclude
that only altering the type of chord hardly changes the overall emotion of the
music. The qualitative analysis demonstrates the ability of our model to
generate variable harmonies.
- Abstract(参考訳): 既存のメロディ調和モデルでは、生成したハーモニーの品質向上に大きな進歩を遂げているが、その多くは音楽の下の感情を無視している。
一方、以前の手法で生成された調和の変動性は不十分である。
これらの問題を解決するために,LSTMを用いた階層的変分自動エンコーダ(LHVAE)を提案する。
特に、LHVAEは、グローバルおよびローカルな音楽特性をモデル化するために、様々なレベル(ピースレベルとバーレベル)の潜伏変数と感情条件を組み込んでいる。
さらに,各ステップに注意に基づくメロディコンテキストベクトルを導入し,メロディとハーモニーの対応をよりよく学習する。
目的実験の結果,提案モデルは他のLSTMモデルよりも優れていた。
主観的評価により、和音の種類を変えるだけでは音楽の全体的な感情は変わらないと結論づけた。
定性的解析は、我々のモデルが可変調和を生成する能力を示す。
関連論文リスト
- Emotion-Driven Melody Harmonization via Melodic Variation and Functional Representation [16.790582113573453]
感情駆動のメロディは、望ましい感情を伝えるために、1つのメロディのための多様なハーモニーを生成することを目的としている。
以前の研究では、異なるコードで同じメロディを調和させることで、リードシートの知覚的価値を変えることが困難であった。
本稿では,シンボリック音楽の新たな機能表現を提案する。
論文 参考訳(メタデータ) (2024-07-29T17:05:12Z) - MuseBarControl: Enhancing Fine-Grained Control in Symbolic Music Generation through Pre-Training and Counterfactual Loss [51.85076222868963]
制御信号と対応する音楽トークンを直接リンクする事前学習タスクを導入する。
次に、生成した音楽と制御プロンプトとの整合性を向上する新たな対実的損失を実現する。
論文 参考訳(メタデータ) (2024-07-05T08:08:22Z) - MuPT: A Generative Symbolic Music Pretrained Transformer [56.09299510129221]
音楽の事前学習におけるLarge Language Models (LLM) の適用について検討する。
生成過程の異なるトラックからの不整合対策に関連する課題に対処するために,SMT-ABC Notation(Synchronized Multi-Track ABC Notation)を提案する。
私たちのコントリビューションには、最大8192個のトークンを処理可能な一連のモデルが含まれており、トレーニングセットの象徴的な音楽データの90%をカバーしています。
論文 参考訳(メタデータ) (2024-04-09T15:35:52Z) - Towards Improving Harmonic Sensitivity and Prediction Stability for
Singing Melody Extraction [36.45127093978295]
本稿では,2つの仮定に基づいて,入力特徴量修正と訓練対象量修正を提案する。
後続高調波に対するモデルの感度を高めるため、離散z変換を用いた複合周波数と周期表現を修正した。
我々はこれらの修正を、MSNet、FTANet、ピアノの書き起こしネットワークから修正された新しいモデルPianoNetなど、いくつかのモデルに適用する。
論文 参考訳(メタデータ) (2023-08-04T21:59:40Z) - MERT: Acoustic Music Understanding Model with Large-Scale Self-supervised Training [74.32603591331718]
本稿では,MLMスタイルの音響事前学習において,教師モデルと擬似ラベルを組み込んだ大規模自己教師型学習(MERT)を用いた音響音楽理解モデルを提案する。
実験結果から,本モデルでは14曲の楽曲理解タスクを一般化し,性能を向上し,SOTA(State-of-the-art)全体のスコアを達成できることが示唆された。
論文 参考訳(メタデータ) (2023-05-31T18:27:43Z) - BacHMMachine: An Interpretable and Scalable Model for Algorithmic
Harmonization for Four-part Baroque Chorales [23.64897650817862]
BacHMMachineは、音楽作曲の原則によって導かれる「理論駆動」の枠組みを採用している。
与えられた旋律線から鍵変調と和音の進行を学習するための確率的フレームワークを提供する。
これにより計算負荷が大幅に減少し、解釈可能性も向上する。
論文 参考訳(メタデータ) (2021-09-15T23:39:45Z) - DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis [53.19363127760314]
DiffSingerは、音楽スコアで調整されたメログラムにノイズを反復的に変換するパラメータ化されたマルコフチェーンです。
中国の歌唱データセットで行った評価は、DiffSingerが最先端のSVSワークを顕著な差で上回っていることを示している。
論文 参考訳(メタデータ) (2021-05-06T05:21:42Z) - A framework to compare music generative models using automatic
evaluation metrics extended to rhythm [69.2737664640826]
本稿では,前回の研究で提示された,リズムを考慮せず,設計決定を下すための枠組みを取り上げ,単音素音楽作成における2つのrnnメモリセルの性能評価のためにリズムサポートを付加した。
モデルでは,音素変換の処理を考慮し,リズムサポートを付加した幾何学に基づく自動計測値を用いて,生成した楽曲の質を評価する。
論文 参考訳(メタデータ) (2021-01-19T15:04:46Z) - HpRNet : Incorporating Residual Noise Modeling for Violin in a
Variational Parametric Synthesizer [11.4219428942199]
そこで我々は,高音域の演奏スタイルにおいて,弓音が不可欠な部分であるカルナティック・ヴァイオリン記録のデータセットを提案する。
信号の高調波成分と残差成分、およびそれらの相互依存性についての知見を得る。
論文 参考訳(メタデータ) (2020-08-19T12:48:32Z) - VaPar Synth -- A Variational Parametric Model for Audio Synthesis [78.3405844354125]
本稿では,条件付き変分オートエンコーダ(CVAE)を用いた変分パラメトリックシンセサイザVaPar Synthを提案する。
提案するモデルの性能は,ピッチを柔軟に制御した楽器音の再構成と生成によって実証する。
論文 参考訳(メタデータ) (2020-03-30T16:05:47Z) - Continuous Melody Generation via Disentangled Short-Term Representations
and Structural Conditions [14.786601824794369]
ユーザが指定したシンボリックシナリオと過去の音楽コンテキストを組み合わせることで,メロディーを構成するモデルを提案する。
本モデルでは,8拍子の音符列を基本単位として長い旋律を生成でき,一貫したリズムパターン構造を他の特定の歌と共有することができる。
その結果,本モデルが生成する音楽は,顕著な繰り返し構造,豊かな動機,安定したリズムパターンを有する傾向が示唆された。
論文 参考訳(メタデータ) (2020-02-05T06:23:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。