Towards a Robust Soft Baby Robot With Rich Interaction Ability for Advanced Machine Learning Algorithms
- URL: http://arxiv.org/abs/2404.08093v1
- Date: Thu, 11 Apr 2024 19:15:45 GMT
- Title: Towards a Robust Soft Baby Robot With Rich Interaction Ability for Advanced Machine Learning Algorithms
- Authors: Mohannad Alhakami, Dylan R. Ashley, Joel Dunham, Francesco Faccio, Eric Feron, Jürgen Schmidhuber,
- Abstract summary: We build a robust, partially soft robotic limb with a large action space and rich sensory data stream from multiple cameras.
As a proof of concept, we train two contemporary machine learning algorithms to perform a simple target-finding task.
- Score: 25.85850890842541
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence has made great strides in many areas lately, yet it has had comparatively little success in general-use robotics. We believe one of the reasons for this is the disconnect between traditional robotic design and the properties needed for open-ended, creativity-based AI systems. To that end, we, taking selective inspiration from nature, build a robust, partially soft robotic limb with a large action space, rich sensory data stream from multiple cameras, and the ability to connect with others to enhance the action space and data stream. As a proof of concept, we train two contemporary machine learning algorithms to perform a simple target-finding task. Altogether, we believe that this design serves as a first step to building a robot tailor-made for achieving artificial general intelligence.
Related papers
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge.
We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people, and its ability to acquire new skills via fine-tuning.
arXiv Detail & Related papers (2024-10-31T17:22:30Z) - Unifying 3D Representation and Control of Diverse Robots with a Single Camera [48.279199537720714]
We introduce Neural Jacobian Fields, an architecture that autonomously learns to model and control robots from vision alone.
Our approach achieves accurate closed-loop control and recovers the causal dynamic structure of each robot.
arXiv Detail & Related papers (2024-07-11T17:55:49Z) - HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
We present a high-dimensional, simulated robot learning benchmark, HumanoidBench, featuring a humanoid robot equipped with dexterous hands.
Our findings reveal that state-of-the-art reinforcement learning algorithms struggle with most tasks, whereas a hierarchical learning approach achieves superior performance when supported by robust low-level policies.
arXiv Detail & Related papers (2024-03-15T17:45:44Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - Exploring the effects of robotic design on learning and neural control [0.0]
dissertation focuses on the development of robotic bodies, rather than neural controllers.
I have discovered that robots can be designed such that they overcome many of the current pitfalls encountered by neural controllers in multitask settings.
arXiv Detail & Related papers (2023-06-06T15:17:34Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
In imitation and reinforcement learning, the cost of human supervision limits the amount of data that robots can be trained on.
In this work, we propose MEDAL++, a novel design for self-improving robotic systems.
The robot autonomously practices the task by learning to both do and undo the task, simultaneously inferring the reward function from the demonstrations.
arXiv Detail & Related papers (2023-03-02T18:51:38Z) - Evolution Gym: A Large-Scale Benchmark for Evolving Soft Robots [29.02903745467536]
We propose Evolution Gym, the first large-scale benchmark for co-optimizing the design and control of soft robots.
Our benchmark environments span a wide range of tasks, including locomotion on various types of terrains and manipulation.
We develop several robot co-evolution algorithms by combining state-of-the-art design optimization methods and deep reinforcement learning techniques.
arXiv Detail & Related papers (2022-01-24T18:39:22Z) - Learning Perceptual Concepts by Bootstrapping from Human Queries [41.07749131023931]
We propose a new approach whereby the robot learns a low-dimensional variant of the concept and uses it to generate a larger data set for learning the concept in the high-dimensional space.
This lets it take advantage of semantically meaningful privileged information only accessible at training time, like object poses and bounding boxes, that allows for richer human interaction to speed up learning.
arXiv Detail & Related papers (2021-11-09T16:43:46Z) - Learning Locomotion Skills in Evolvable Robots [10.167123492952694]
We introduce a controller architecture and a generic learning method to allow a modular robot with an arbitrary shape to learn to walk towards a target and follow this target if it moves.
Our approach is validated on three robots, a spider, a gecko, and their offspring, in three real-world scenarios.
arXiv Detail & Related papers (2020-10-19T14:01:50Z) - SAPIEN: A SimulAted Part-based Interactive ENvironment [77.4739790629284]
SAPIEN is a realistic and physics-rich simulated environment that hosts a large-scale set for articulated objects.
We evaluate state-of-the-art vision algorithms for part detection and motion attribute recognition as well as demonstrate robotic interaction tasks.
arXiv Detail & Related papers (2020-03-19T00:11:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.