論文の概要: Non-parametric Probabilistic Time Series Forecasting via Innovations
Representation
- arxiv url: http://arxiv.org/abs/2306.03782v1
- Date: Mon, 5 Jun 2023 02:24:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-07 14:45:09.384521
- Title: Non-parametric Probabilistic Time Series Forecasting via Innovations
Representation
- Title(参考訳): 革新表現による非パラメトリック確率時系列予測
- Authors: Xinyi Wang, Meijen Lee, Qing Zhao, Lang Tong
- Abstract要約: 確率的時系列予測は、過去の実現後の時間における時系列の条件付き確率分布を予測する。
既存のアプローチは主にパラメトリックまたは半パラメトリックの時系列モデルに基づいており、制限があり、検証が困難であり、様々な条件に適応することが困難である。
本論文では,Norbert Wiener と Gopinath Kallianpur の先駆的なエムイノベーションの古典的概念に基づく非パラメトリック手法を提案する。
- 参考スコア(独自算出の注目度): 29.255644836978956
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Probabilistic time series forecasting predicts the conditional probability
distributions of the time series at a future time given past realizations. Such
techniques are critical in risk-based decision-making and planning under
uncertainties. Existing approaches are primarily based on parametric or
semi-parametric time-series models that are restrictive, difficult to validate,
and challenging to adapt to varying conditions. This paper proposes a
nonparametric method based on the classic notion of {\em innovations} pioneered
by Norbert Wiener and Gopinath Kallianpur that causally transforms a
nonparametric random process to an independent and identical uniformly
distributed {\em innovations process}. We present a machine-learning
architecture and a learning algorithm that circumvent two limitations of the
original Wiener-Kallianpur innovations representation: (i) the need for known
probability distributions of the time series and (ii) the existence of a causal
decoder that reproduces the original time series from the innovations
representation. We develop a deep-learning approach and a Monte Carlo sampling
technique to obtain a generative model for the predicted conditional
probability distribution of the time series based on a weak notion of
Wiener-Kallianpur innovations representation. The efficacy of the proposed
probabilistic forecasting technique is demonstrated on a variety of electricity
price datasets, showing marked improvement over leading benchmarks of
probabilistic forecasting techniques.
- Abstract(参考訳): 確率的時系列予測は、過去の実現後の時間における時系列の条件付き確率分布を予測する。
このような手法は、不確実性の下でのリスクベースの意思決定と計画において重要である。
既存のアプローチは主にパラメトリックまたは半パラメトリックの時系列モデルに基づいており、制限があり、検証が難しく、様々な条件に適応することが難しい。
本稿は,Norbert Wiener と Gopinath Kallianpur が提唱した,非パラメトリックランダム過程を独立で一様に分散した {\em イノベーションプロセスに因果的に変換する古典的な {\em イノベーションの概念に基づく非パラメトリック手法を提案する。
本稿では,wiener-kallianpurイノベーション表現の2つの制限を回避する機械学習アーキテクチャと学習アルゴリズムを提案する。
一 時系列の既知確率分布の必要性及び
(ii)イノベーションの表現から元の時系列を再現する因果的デコーダの存在。
ウィナー・カリアンプル革新表現の弱い概念に基づく時系列の予測条件確率分布の生成モデルを得るため,深層学習手法とモンテカルロサンプリング手法を開発した。
確率予測手法の有効性を様々な電力価格データセットで示し、確率予測手法の先行ベンチマークよりも顕著に改善したことを示す。
関連論文リスト
- ProGen: Revisiting Probabilistic Spatial-Temporal Time Series Forecasting from a Continuous Generative Perspective Using Stochastic Differential Equations [18.64802090861607]
ProGen Proは、不確実性を管理しながら依存関係を効果的にキャプチャする堅牢なソリューションを提供する。
4つのベンチマークトラフィックデータセットの実験により、ProGen Proは最先端の決定論的確率モデルより優れていることが示された。
論文 参考訳(メタデータ) (2024-11-02T14:37:30Z) - Conformal Generative Modeling with Improved Sample Efficiency through Sequential Greedy Filtering [55.15192437680943]
生成モデルは出力に対する厳密な統計的保証を欠いている。
厳密な統計的保証を満たす予測セットを生成する逐次共形予測法を提案する。
このことは、高い確率で予測セットが少なくとも1つの許容可能な(または有効な)例を含むことを保証している。
論文 参考訳(メタデータ) (2024-10-02T15:26:52Z) - Probabilistic Forecasting of Real-Time Electricity Market Signals via Interpretable Generative AI [41.99446024585741]
Weak Innovation AutoEncoderをベースとしたGenerative Probabilistic ForecastingアーキテクチャであるWIAE-GPFを提案する。
構造収束を保証する新しい学習アルゴリズムを提案し、生成した予測サンプルが基底真理条件付き確率分布と一致することを保証した。
論文 参考訳(メタデータ) (2024-03-09T00:41:30Z) - Generative Probabilistic Time Series Forecasting and Applications in
Grid Operations [47.19756484695248]
生成確率予測は、過去の時系列観測で与えられた条件付き確率分布に基づいて、将来の時系列サンプルを生成する。
本稿では、独立かつ同一に分散したイノベーションシーケンスを抽出する、弱いイノベーションオートエンコーダアーキテクチャと学習アルゴリズムを提案する。
弱いイノベーションシーケンスはベイズ的であり、弱イノベーションオートエンコーダが生成確率予測のための標準アーキテクチャとなることを示す。
論文 参考訳(メタデータ) (2024-02-21T15:23:21Z) - Score Matching-based Pseudolikelihood Estimation of Neural Marked
Spatio-Temporal Point Process with Uncertainty Quantification [59.81904428056924]
我々は、不確実な定量化を伴うmarkPsを学習するためのスコアMAtching推定器であるSMASHを紹介する。
具体的には,スコアマッチングによるマークPsの擬似的類似度を推定することにより,正規化自由度を推定する。
提案手法の優れた性能は、事象予測と不確実性定量化の両方において広範な実験によって実証される。
論文 参考訳(メタデータ) (2023-10-25T02:37:51Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
本稿では,正規格子法とグラフ法という2種類の予測問題について述べる。
我々はベイジアンおよび頻繁な視点からUQ法を解析し、統計的決定理論を通じて統一的な枠組みを提示する。
実際の道路ネットワークのトラフィック、疫病、空気質予測タスクに関する広範な実験を通じて、異なるUQ手法の統計計算トレードオフを明らかにする。
論文 参考訳(メタデータ) (2021-05-25T14:35:46Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - Remaining Useful Life Estimation Under Uncertainty with Causal GraphNets [0.0]
時系列モデルの構築とトレーニングのための新しいアプローチを提案する。
提案手法は,非定常時系列の予測モデル構築に適している。
論文 参考訳(メタデータ) (2020-11-23T21:28:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。