論文の概要: Unsupervised Iterative U-Net with an Internal Guidance Layer for
Vertebrae Contrast Enhancement in Chest X-Ray Images
- arxiv url: http://arxiv.org/abs/2306.03983v1
- Date: Tue, 6 Jun 2023 19:36:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2023-06-08 17:18:30.289631
- Title: Unsupervised Iterative U-Net with an Internal Guidance Layer for
Vertebrae Contrast Enhancement in Chest X-Ray Images
- Title(参考訳): 胸部X線画像における頂点コントラスト強調のための内部誘導層を用いた教師なし反復U-Net
- Authors: Ella Eidlin, Assaf Hoogi, Nathan S. Netanyahu
- Abstract要約: 我々は,深部ニューラルネットワークを反復的に訓練することにより,X線画像の品質向上のための新しい,堅牢なアプローチを提案する。
本フレームワークは胸部X線像における脊椎の微細構造を増強する内部誘導層を含む。
実験の結果,提案手法は既存のBRISQUEスコアの精度向上手法よりも優れていることがわかった。
- 参考スコア(独自算出の注目度): 1.521162809610347
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: X-ray imaging is a fundamental clinical tool for screening and diagnosing
various diseases. However, the spatial resolution of radiographs is often
limited, making it challenging to diagnose small image details and leading to
difficulties in identifying vertebrae anomalies at an early stage in chest
radiographs. To address this limitation, we propose a novel and robust approach
to significantly improve the quality of X-ray images by iteratively training a
deep neural network. Our framework includes an embedded internal guidance layer
that enhances the fine structures of spinal vertebrae in chest X-ray images
through fully unsupervised training, utilizing an iterative procedure that
employs the same network architecture in each enhancement phase. Additionally,
we have designed an optimized loss function that accurately identifies object
boundaries and enhances spinal features, thereby further enhancing the quality
of the images. Experimental results demonstrate that our proposed method
surpasses existing detail enhancement methods in terms of BRISQUE scores, and
is comparable in terms of LPC-SI. Furthermore, our approach exhibits superior
performance in restoring hidden fine structures, as evidenced by our
qualitative results. This innovative approach has the potential to
significantly enhance the diagnostic accuracy and early detection of diseases,
making it a promising advancement in X-ray imaging technology.
- Abstract(参考訳): x線イメージングは様々な疾患をスクリーニングし診断するための基本的な臨床ツールである。
しかし、x線撮影の空間分解能はしばしば限られており、小さな画像詳細の診断が難しく、胸部x線撮影の初期段階で椎体異常の同定が困難になる。
この制限に対処するために,深層ニューラルネットワークを反復的に訓練することにより,x線画像の品質を大幅に向上させる新しいロバストな手法を提案する。
本フレームワークは, 胸部X線画像における脊椎の微細構造を, 完全に教師なしの訓練により強化する内部誘導層を備えており, 同じネットワークアーキテクチャを各エンハンスメントフェーズで活用する反復的手順を用いている。
さらに,オブジェクト境界を正確に識別し,脊椎の特徴を増強し,画像の品質をさらに向上させる最適化損失関数を設計した。
実験の結果,提案手法は既存のBRISQUEスコアの精度向上手法よりも優れており,LPC-SIと同等であることがわかった。
さらに, 本手法は, 定性的な結果から示されるように, 隠れた微細構造の復元において優れた性能を示す。
この革新的なアプローチは、診断精度と疾患の早期検出を大幅に向上させる可能性があり、X線イメージング技術の進歩に期待できる。
関連論文リスト
- Towards Accurate and Interpretable Neuroblastoma Diagnosis via Contrastive Multi-scale Pathological Image Analysis [16.268045905735818]
CMSwinKANは、病理画像分類に適したコントラスト学習に基づくマルチスケール機能融合モデルである。
臨床所見から導かれるソフト投票機構を導入し,パッチレベルの予測をスライド画像全体の分類にシームレスにブリッジする。
その結果、CMSwinKANは、既存の最先端の病理モデルよりも、大規模なデータセットで事前訓練されたモデルよりもパフォーマンスがよいことが示された。
論文 参考訳(メタデータ) (2025-04-18T15:39:46Z) - AttCDCNet: Attention-enhanced Chest Disease Classification using X-Ray Images [0.0]
X線画像診断のための新しい検出モデルtextbfAttCDCNetを提案する。
提案されたモデルは、新型コロナウイルスのラジオグラフィーデータセットでそれぞれ94.94%、95.14%、94.53%の精度、精度、リコールを達成した。
論文 参考訳(メタデータ) (2024-10-20T16:08:20Z) - Dual-Domain CLIP-Assisted Residual Optimization Perception Model for Metal Artifact Reduction [9.028901322902913]
CT(Computed tomography)画像における金属遺物は,正確な臨床診断に重要な課題である。
深層学習に基づくアプローチ、特に生成モデルは、金属人工物還元(MAR)のために提案されている。
論文 参考訳(メタデータ) (2024-08-14T02:37:26Z) - Real-time guidewire tracking and segmentation in intraoperative x-ray [52.51797358201872]
リアルタイムガイドワイヤ分割と追跡のための2段階のディープラーニングフレームワークを提案する。
第1段階では、ヨロフ5検出器が元のX線画像と合成画像を使って訓練され、ターゲットのガイドワイヤのバウンディングボックスを出力する。
第2段階では、検出された各バウンディングボックスにガイドワイヤを分割するために、新規で効率的なネットワークが提案されている。
論文 参考訳(メタデータ) (2024-04-12T20:39:19Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - Deep Few-view High-resolution Photon-counting Extremity CT at Halved Dose for a Clinical Trial [8.393536317952085]
ニュージーランドの臨床試験において,PCCT画像の半減量と2倍の速度で再現する深層学習に基づくアプローチを提案する。
本稿では,GPUメモリの制限を緩和するパッチベースのボリュームリファインメントネットワーク,合成データを用いたトレーニングネットワーク,およびモデルベースの反復リファインメントを用いて,合成データと実世界のギャップを埋める。
論文 参考訳(メタデータ) (2024-03-19T00:07:48Z) - BarlowTwins-CXR : Enhancing Chest X-Ray abnormality localization in
heterogeneous data with cross-domain self-supervised learning [1.7479385556004874]
BarlwoTwins-CXRは,胸部X線画像解析の自律的異常局所化のための自己指導型学習戦略である。
従来のImageNetの事前訓練モデルと比較して、mAP50の精度は3%向上した。
論文 参考訳(メタデータ) (2024-02-09T16:10:13Z) - Multi-Scale Feature Fusion using Parallel-Attention Block for COVID-19
Chest X-ray Diagnosis [2.15242029196761]
世界的な新型コロナウイルス危機下では、チェストX線(CXR)画像からの新型コロナウイルスの正確な診断が重要である。
並列アテンションブロックを用いた新しい多機能融合ネットワークを提案し、元のCXR画像とローカル位相特徴強調CXR画像をマルチスケールで融合する。
論文 参考訳(メタデータ) (2023-04-25T16:56:12Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
本稿では,正対損失緩和とランダムな文サンプリングを含む新たな微調整手法を提案する。
提案手法は,胸部X線データセットと3つの事前訓練モデル間のゼロショット病理分類を一貫して改善する。
論文 参考訳(メタデータ) (2022-12-14T06:04:18Z) - Artificial Intelligence for Automatic Detection and Classification
Disease on the X-Ray Images [0.0]
本研究では,Deep Learning Pre-trained RepVGGアルゴリズムを用いて肺疾患の迅速検出を行う。
我々は、人の肺の患部の自動ハイライト検出に人工知能技術を適用している。
論文 参考訳(メタデータ) (2022-11-14T03:51:12Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
新型コロナウイルス(COVID-19)のパンデミック(パンデミック)の間、新型コロナウイルス(COVID-19)の診断のための緊急設定で実施される画像の量は、臨床用CXRの取得が広範囲に及んだ。
公開データセット内の臨床的に取得されたCXRの変動品質は、アルゴリズムのパフォーマンスに大きな影響を及ぼす可能性がある。
我々は、新型コロナウイルスの胸部X線データセットを前処理し、望ましくないバイアスを取り除くための、シンプルで効果的なステップワイズアプローチを提案する。
論文 参考訳(メタデータ) (2022-08-22T13:57:04Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - Cross-Modal Contrastive Learning for Abnormality Classification and
Localization in Chest X-rays with Radiomics using a Feedback Loop [63.81818077092879]
医療画像のためのエンドツーエンドのセミスーパーバイスドクロスモーダルコントラスト学習フレームワークを提案する。
まず、胸部X線を分類し、画像特徴を生成するために画像エンコーダを適用する。
放射能の特徴は別の専用エンコーダを通過し、同じ胸部x線から生成された画像の特徴の正のサンプルとして機能する。
論文 参考訳(メタデータ) (2021-04-11T09:16:29Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
本研究は、COVID-19 LCXRデータ不足のバランスをとるために画像変換を適用するために、文献の体系を活用することを目的としている。
convolutional neural networks(cnns)のようなディープラーニング技術は、健康状態と疾患状態を区別する特徴を選択することができる。
本研究は,CNNアーキテクチャを用いて高速多クラスLCXR分類を94%精度で行う。
論文 参考訳(メタデータ) (2021-04-06T02:01:43Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Cross Chest Graph for Disease Diagnosis with Structural Relational
Reasoning [2.7148274921314615]
X線画像のコンピュータ診断において位置病変は重要である。
一般に弱教師付き手法はX線像の特性を考慮できなかった。
自動病変検出の性能を向上させるCross-chest Graph (CCG)を提案する。
論文 参考訳(メタデータ) (2021-01-22T08:24:04Z) - Advancing diagnostic performance and clinical usability of neural
networks via adversarial training and dual batch normalization [2.1699022621790736]
6人の放射線学者がX線、CT、磁気共鳴画像スキャンのデータセットにおける塩分濃度マップの解釈可能性を評価する。
その結果, 十分大きなデータセットと二重バッチノルムを用いた場合, 逆学習モデルの精度は標準モデルに等しいことがわかった。
論文 参考訳(メタデータ) (2020-11-25T20:41:01Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。