論文の概要: BokehOrNot: Transforming Bokeh Effect with Image Transformer and Lens
Metadata Embedding
- arxiv url: http://arxiv.org/abs/2306.04032v1
- Date: Tue, 6 Jun 2023 21:49:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-08 16:56:27.253390
- Title: BokehOrNot: Transforming Bokeh Effect with Image Transformer and Lens
Metadata Embedding
- Title(参考訳): BokehOrNot:画像変換器とレンズメタデータ埋め込みによるボケ効果の変換
- Authors: Zhihao Yang, Wenyi Lian, Siyuan Lai
- Abstract要約: Bokeh効果(ボケエフェクト、英: Bokeh effect)は、広角レンズを備えたハイエンドカメラが生み出す、快適な視覚体験を提供する光学現象である。
本稿では,このモデルにレンズメタデータを埋め込み,アルファマスクを用いた損失計算手法を提案する。
以上の手法に基づいて,ブラープ・トゥ・シャープとシャープ・トゥ・ブルーのボケ効果を両立できるボケオルノットモデルを提案する。
- 参考スコア(独自算出の注目度): 2.3784282912975345
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bokeh effect is an optical phenomenon that offers a pleasant visual
experience, typically generated by high-end cameras with wide aperture lenses.
The task of bokeh effect transformation aims to produce a desired effect in one
set of lenses and apertures based on another combination. Current models are
limited in their ability to render a specific set of bokeh effects, primarily
transformations from sharp to blur. In this paper, we propose a novel universal
method for embedding lens metadata into the model and introducing a loss
calculation method using alpha masks from the newly released Bokeh Effect
Transformation Dataset(BETD) [3]. Based on the above techniques, we propose the
BokehOrNot model, which is capable of producing both blur-to-sharp and
sharp-to-blur bokeh effect with various combinations of lenses and aperture
sizes. Our proposed model outperforms current leading bokeh rendering and image
restoration models and renders visually natural bokeh effects. Our code is
available at: https://github.com/indicator0/bokehornot.
- Abstract(参考訳): ボケ効果(bokeh effect)は、広角レンズを備えたハイエンドカメラによって通常生成される、快適な視覚体験を提供する光学現象である。
ボケ効果変換の課題は、1組のレンズと開口部で別の組み合わせに基づいて望ましい効果を生み出すことである。
現在のモデルは、特定のボケ効果のセットをレンダリングする能力に制限があり、主にシャープからボケへ変換する。
本稿では,レンズメタデータをモデルに埋め込み,新たにリリースされたbokeh効果変換データセット(betd)からアルファマスクを用いた損失計算法を提案する。
以上の手法に基づいて、ボケオルノットモデルを提案する。ボケオルノットモデルは、ブラープとシャープのボケ効果の両方を様々なレンズと開口サイズの組み合わせで生成できる。
提案モデルでは、現在のボケレンダリングと画像復元モデルより優れ、視覚的に自然なボケ効果をレンダリングする。
私たちのコードは、https://github.com/indicator0/bokehornot.comで利用可能です。
関連論文リスト
- Variable Aperture Bokeh Rendering via Customized Focal Plane Guidance [18.390543681127976]
提案手法は,主流のボケモデルよりもはるかに軽量な4.4Mパラメータで,最先端の競合性能を実現している。
提案手法は,主流のボケモデルよりもはるかに軽量な4.4Mパラメータで,最先端の競合性能を実現している。
論文 参考訳(メタデータ) (2024-10-18T12:04:23Z) - Adaptive Window Pruning for Efficient Local Motion Deblurring [81.35217764881048]
局所的な動きのぼかしは、露光中の移動物体と静止背景との混合により、実世界の写真で一般的に発生する。
既存の画像のデブロアリング手法は主にグローバルなデブロアリングに焦点を当てている。
本稿では,高解像度の局所的ぼやけた画像を適応的かつ効率的に復元することを目的とする。
論文 参考訳(メタデータ) (2023-06-25T15:24:00Z) - GBSD: Generative Bokeh with Stage Diffusion [16.189787907983106]
ボケ効果(ボケエフェクト、bokeh effect)は、写真の中の焦点領域をぼかす芸術技法である。
我々は、ボケスタイルでフォトリアリスティックな画像を合成する最初の生成テキスト・画像モデルであるGBSDを提案する。
論文 参考訳(メタデータ) (2023-06-14T05:34:02Z) - Realistic Bokeh Effect Rendering on Mobile GPUs, Mobile AI & AIM 2022
challenge: Report [75.79829464552311]
この課題は、最新のスマートフォンモデルで実行できる効率的なエンドツーエンドのAIベースのレンダリングアプローチを開発することだった。
得られたモデルはKirin 9000のMali GPUで評価され、多くのディープラーニングオプティマスに対して優れた加速結果が得られた。
論文 参考訳(メタデータ) (2022-11-07T22:42:02Z) - Multi-View Motion Synthesis via Applying Rotated Dual-Pixel Blur Kernels [48.063176079878055]
ポートレートモードで撮影された画像に適用される主な効果の1つは、合成浅層深度(DoF)である。
本研究は, ポートレートモードにおけるぼやけた合成手順の変更を導入することで, NIMAT効果のレンダリングの傾向を追究するものである。
我々の修正により、回転するぼやけたカーネルを適用して、単一の画像から多視点ボケを高品質に合成することができる。
論文 参考訳(メタデータ) (2021-11-15T15:23:55Z) - AIM 2020 Challenge on Rendering Realistic Bokeh [95.87775182820518]
本稿では,第2回AIM現実ボケ効果レンダリングチャレンジをレビューする。
目標は、大規模なESB! bokehデータセットを使用して、現実的な浅いフォーカステクニックを学ぶことだった。
参加者は、他のカメラやセンサーからの追加データなしで、単一のフレームのみに基づいてボケ効果をレンダリングしなければならなかった。
論文 参考訳(メタデータ) (2020-11-10T09:15:38Z) - BGGAN: Bokeh-Glass Generative Adversarial Network for Rendering
Realistic Bokeh [19.752904494597328]
本稿では,複雑なハードウェアに依存しないボケ画像を生成するGlass-Netという新しいジェネレータを提案する。
実験の結果,この方法は高品質なボケ効果を示し,全スマートフォンチップセットで1.9秒で1,1024倍の1536$の画像を処理可能であることがわかった。
論文 参考訳(メタデータ) (2020-11-04T11:56:34Z) - Rendering Natural Camera Bokeh Effect with Deep Learning [95.86933125733673]
ボケ(Bokeh)は、写真に焦点をあてる重要な芸術効果である。
モバイルカメラは、光学の直径が非常に小さいため、被写界深度が浅い写真を作ることができない。
本稿では,デジタル一眼レフカメラで撮影された写真から直接,現実的な浅層焦点技術を学ぶことを提案する。
論文 参考訳(メタデータ) (2020-06-10T07:28:06Z) - Depth-aware Blending of Smoothed Images for Bokeh Effect Generation [10.790210744021072]
本稿では,画像から高品質なボケ効果を生成するために,エンドツーエンドのディープラーニングフレームワークを提案する。
ネットワークは軽量で、HD画像を0.03秒で処理できる。
このアプローチは、AIM 2019 Bokeh effect Challenge-Perceptual Trackで2位にランクインした。
論文 参考訳(メタデータ) (2020-05-28T18:11:05Z) - Deblurring by Realistic Blurring [110.54173799114785]
本稿では,BGAN(Learning-to-blurr GAN)とDBGAN(Learning-to-DeBlur GAN)の2つのモデルを組み合わせた新しい手法を提案する。
第1のモデルであるBGANは、未ペアのシャープでぼやけた画像セットでシャープな画像をぼやかす方法を学習し、第2のモデルであるDBGANをガイドして、そのような画像を正しくデブロアする方法を学ぶ。
さらなる貢献として,多様なぼやけた画像を含むRWBIデータセットについても紹介する。
論文 参考訳(メタデータ) (2020-04-04T05:25:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。