論文の概要: DualHGNN: A Dual Hypergraph Neural Network for Semi-Supervised Node
Classification based on Multi-View Learning and Density Awareness
- arxiv url: http://arxiv.org/abs/2306.04214v1
- Date: Wed, 7 Jun 2023 07:40:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-08 15:49:46.161144
- Title: DualHGNN: A Dual Hypergraph Neural Network for Semi-Supervised Node
Classification based on Multi-View Learning and Density Awareness
- Title(参考訳): dualhgnn: 多視点学習と密度認識に基づく半教師付きノード分類のためのデュアルハイパーグラフニューラルネットワーク
- Authors: Jianpeng Liao, Jun Yan and Qian Tao
- Abstract要約: グラフに基づく半教師付きノード分類は、研究価値と重要性の高い多くのアプリケーションにおいて最先端のアプローチであることが示されている。
本稿では、ハイパーグラフ構造学習とハイパーグラフ表現学習を同時に統合した新しいデュアル接続モデルであるデュアルハイパーグラフニューラルネットワーク(DualHGNN)を提案する。
- 参考スコア(独自算出の注目度): 3.698434507617248
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Graph-based semi-supervised node classification has been shown to become a
state-of-the-art approach in many applications with high research value and
significance. Most existing methods are only based on the original intrinsic or
artificially established graph structure which may not accurately reflect the
"true" correlation among data and are not optimal for semi-supervised node
classification in the downstream graph neural networks. Besides, while existing
graph-based methods mostly utilize the explicit graph structure, some implicit
information, for example, the density information, can also provide latent
information that can be further exploited. To address these limitations, this
paper proposes the Dual Hypergraph Neural Network (DualHGNN), a new dual
connection model integrating both hypergraph structure learning and hypergraph
representation learning simultaneously in a unified architecture. The DualHGNN
first leverages a multi-view hypergraph learning network to explore the optimal
hypergraph structure from multiple views, constrained by a consistency loss
proposed to improve its generalization. Then, DualHGNN employs a density-aware
hypergraph attention network to explore the high-order semantic correlation
among data points based on the density-aware attention mechanism. Extensive
experiments are conducted in various benchmark datasets, and the results
demonstrate the effectiveness of the proposed approach.
- Abstract(参考訳): グラフに基づく半教師付きノード分類は、研究価値と重要性の高い多くのアプリケーションにおいて最先端のアプローチであることが示されている。
既存の手法の多くは、データ間の「真の」相関を正確に反映せず、下流グラフニューラルネットワークにおける半教師付きノード分類に最適でない、本来の内在的あるいは人工的に確立されたグラフ構造に基づいている。
さらに、既存のグラフベースの手法は主に明示的なグラフ構造を用いるが、暗黙的な情報(例えば密度情報)は、さらに活用可能な潜伏情報を提供することもできる。
本稿では,ハイパーグラフ構造学習とハイパーグラフ表現学習を同時に統合した新しいデュアル接続モデルであるデュアルハイパーグラフニューラルネットワーク(DualHGNN)を提案する。
DualHGNNは、まずマルチビューハイパーグラフ学習ネットワークを利用して、複数のビューから最適なハイパーグラフ構造を探索し、その一般化を改善するために提案された一貫性損失に制約される。
次に、DualHGNNは密度認識型ハイパーグラフアテンションネットワークを用いて、密度認識アテンション機構に基づくデータポイント間の高次意味相関を探索する。
様々なベンチマークデータセットで大規模な実験を行い,提案手法の有効性を実証した。
関連論文リスト
- DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - Hypergraph Transformer for Semi-Supervised Classification [50.92027313775934]
我々は新しいハイパーグラフ学習フレームワークHyperGraph Transformer(HyperGT)を提案する。
HyperGTはTransformerベースのニューラルネットワークアーキテクチャを使用して、すべてのノードとハイパーエッジのグローバル相関を効果的に検討する。
局所接続パターンを保ちながら、グローバルな相互作用を効果的に組み込むことで、包括的なハイパーグラフ表現学習を実現する。
論文 参考訳(メタデータ) (2023-12-18T17:50:52Z) - Learning from Heterogeneity: A Dynamic Learning Framework for Hypergraphs [22.64740740462169]
本稿では,動的ハイパーエッジ構築と注意深い埋め込み更新が可能なLFHというハイパーグラフ学習フレームワークを提案する。
提案手法の有効性を評価するため,いくつかの一般的なデータセットを対象とした総合的な実験を行った。
論文 参考訳(メタデータ) (2023-07-07T06:26:44Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
パラメータ化されたハイパーグラフ正規化エネルギー関数の表現型族を示す。
次に、これらのエネルギーの最小化がノード埋め込みとして効果的に機能することを実証する。
提案した双レベルハイパーグラフ最適化と既存のGNNアーキテクチャを共通的に用いている。
論文 参考訳(メタデータ) (2023-06-16T04:40:59Z) - Tensorized Hypergraph Neural Networks [69.65385474777031]
我々は,新しいアジャケーシテンソルベースのtextbfTensorized textbfHypergraph textbfNeural textbfNetwork (THNN) を提案する。
THNNは高次外装機能パッシングメッセージを通じて、忠実なハイパーグラフモデリングフレームワークである。
3次元視覚オブジェクト分類のための2つの広く使われているハイパーグラフデータセットの実験結果から、モデルの有望な性能を示す。
論文 参考訳(メタデータ) (2023-06-05T03:26:06Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
不均一グラフニューラルネットワーク(HGNN)は異種グラフのモデリングと解析において非常に一般的な手法である。
我々は,ノード属性とグラフトポロジの各ガイダンスに関する2つの視点を取り入れた,新規で頑健なヘテロジニアスグラフコントラスト学習手法であるHGCLを初めて開発する。
この新しいアプローチでは,属性とトポロジに関連情報を別々にマイニングする手法として,異なるが最も適した属性とトポロジの融合機構を2つの視点に適用する。
論文 参考訳(メタデータ) (2022-04-30T12:57:02Z) - Density-Aware Hyper-Graph Neural Networks for Graph-based
Semi-supervised Node Classification [3.698434507617248]
本稿では,密度認識型ハイパーグラフニューラルネットワーク(DA-HGNN)を提案する。
提案手法では,データ間の高次セマンティック相関を探索するためにハイパーグラフを提供し,高次接続関係を探索するために密度対応ハイパーグラフアテンションネットワークを提案する。
論文 参考訳(メタデータ) (2022-01-27T13:43:14Z) - Learnable Hypergraph Laplacian for Hypergraph Learning [34.28748027233654]
HyperGraph Convolutional Neural Networks (HGCNN) は、グラフ構造化データに保存された高次関係をモデル化する可能性を示した。
我々はHypERgrAph Laplacian aDaptor(HERALD)と呼ばれる適応的なハイパーグラフ構造を構築するための最初の学習ベース手法を提案する。
HERALDは、ハイパーノードとハイパーエッジの隣接関係をエンドツーエンドで適応的に最適化し、タスク認識ハイパーグラフを学習する。
論文 参考訳(メタデータ) (2021-06-12T02:07:07Z) - Learnable Hypergraph Laplacian for Hypergraph Learning [34.28748027233654]
HyperGraph Convolutional Neural Networks (HGCNN) は、グラフ構造化データに保存された高次関係をモデル化する可能性を示した。
我々はHypERgrAph Laplacian aDaptor(HERALD)と呼ばれる適応的なハイパーグラフ構造を構築するための最初の学習ベース手法を提案する。
HERALDは、ハイパーノードとハイパーエッジの隣接関係をエンドツーエンドで適応的に最適化し、タスク認識ハイパーグラフを学習する。
論文 参考訳(メタデータ) (2021-06-10T12:37:55Z) - Residual Enhanced Multi-Hypergraph Neural Network [26.42547421121713]
HyperGraph Neural Network (HGNN) はハイパーグラフ表現学習のためのデファクト手法である。
本稿では,各ハイパーグラフからのマルチモーダル情報を効果的に融合できるResidual enhanced Multi-Hypergraph Neural Networkを提案する。
論文 参考訳(メタデータ) (2021-05-02T14:53:32Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。