Bayesian Optimisation Against Climate Change: Applications and
Benchmarks
- URL: http://arxiv.org/abs/2306.04343v1
- Date: Wed, 7 Jun 2023 11:17:07 GMT
- Title: Bayesian Optimisation Against Climate Change: Applications and
Benchmarks
- Authors: Sigrid Passano Hellan, Christopher G. Lucas, Nigel H. Goddard
- Abstract summary: We provide a review of applications and benchmarks for Bayesian optimisation in climate change applications.
We identify four main application domains: material discovery, wind farm layout, optimal renewable control and environmental monitoring.
For each domain we identify a public benchmark or data set that is easy to use and evaluate systems against, while being representative of real-world problems.
Due to the lack of a suitable benchmark for environmental monitoring, we propose LAQN-BO, based on air pollution data.
- Score: 0.4640835690336652
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian optimisation is a powerful method for optimising black-box
functions, popular in settings where the true function is expensive to evaluate
and no gradient information is available. Bayesian optimisation can improve
responses to many optimisation problems within climate change for which
simulator models are unavailable or expensive to sample from. While there have
been several feasibility demonstrations of Bayesian optimisation in
climate-related applications, there has been no unifying review of applications
and benchmarks. We provide such a review here, to encourage the use of Bayesian
optimisation in important and well-suited application domains. We identify four
main application domains: material discovery, wind farm layout, optimal
renewable control and environmental monitoring. For each domain we identify a
public benchmark or data set that is easy to use and evaluate systems against,
while being representative of real-world problems. Due to the lack of a
suitable benchmark for environmental monitoring, we propose LAQN-BO, based on
air pollution data. Our contributions are: a) identifying a representative
range of benchmarks, providing example code where necessary; b) introducing a
new benchmark, LAQN-BO; and c) promoting a wider use of climate change
applications among Bayesian optimisation practitioners.
Related papers
- Review, Refine, Repeat: Understanding Iterative Decoding of AI Agents with Dynamic Evaluation and Selection [71.92083784393418]
Inference-time methods such as Best-of-N (BON) sampling offer a simple yet effective alternative to improve performance.
We propose Iterative Agent Decoding (IAD) which combines iterative refinement with dynamic candidate evaluation and selection guided by a verifier.
arXiv Detail & Related papers (2025-04-02T17:40:47Z) - Indirect Query Bayesian Optimization with Integrated Feedback [17.66813850517961]
We develop a new class of Bayesian optimization problems where integrated feedback is given via a conditional expectation of the unknown function $f$ to be optimized.
The goal is to find the global optimum of $f$ by adaptively querying and observing in the space transformed by the conditional distribution.
This is motivated by real-world applications where one cannot access direct feedback due to privacy, hardware or computational constraints.
arXiv Detail & Related papers (2024-12-18T07:20:33Z) - A survey and benchmark of high-dimensional Bayesian optimization of discrete sequences [12.248793682283964]
optimizing discrete black-box functions is key in several domains, e.g. protein engineering and drug design.
We develop a unified framework to test a vast array of high-dimensional Bayesian optimization methods and a collection of standardized black-box functions.
These two components of the benchmark are each supported by flexible, scalable, and easily extendable software libraries.
arXiv Detail & Related papers (2024-06-07T08:39:40Z) - Localized Zeroth-Order Prompt Optimization [54.964765668688806]
We propose a novel algorithm, namely localized zeroth-order prompt optimization (ZOPO)
ZOPO incorporates a Neural Tangent Kernel-based derived Gaussian process into standard zeroth-order optimization for an efficient search of well-performing local optima in prompt optimization.
Remarkably, ZOPO outperforms existing baselines in terms of both the optimization performance and the query efficiency.
arXiv Detail & Related papers (2024-03-05T14:18:15Z) - A General Framework for User-Guided Bayesian Optimization [51.96352579696041]
We propose ColaBO, the first Bayesian-principled framework for prior beliefs beyond the typical kernel structure.
We empirically demonstrate ColaBO's ability to substantially accelerate optimization when the prior information is accurate, and to retain approximately default performance when it is misleading.
arXiv Detail & Related papers (2023-11-24T18:27:26Z) - Better Practices for Domain Adaptation [62.70267990659201]
Domain adaptation (DA) aims to provide frameworks for adapting models to deployment data without using labels.
Unclear validation protocol for DA has led to bad practices in the literature.
We show challenges across all three branches of domain adaptation methodology.
arXiv Detail & Related papers (2023-09-07T17:44:18Z) - Learning Regions of Interest for Bayesian Optimization with Adaptive
Level-Set Estimation [84.0621253654014]
We propose a framework, called BALLET, which adaptively filters for a high-confidence region of interest.
We show theoretically that BALLET can efficiently shrink the search space, and can exhibit a tighter regret bound than standard BO.
arXiv Detail & Related papers (2023-07-25T09:45:47Z) - Movement Penalized Bayesian Optimization with Application to Wind Energy
Systems [84.7485307269572]
Contextual Bayesian optimization (CBO) is a powerful framework for sequential decision-making given side information.
In this setting, the learner receives context (e.g., weather conditions) at each round, and has to choose an action (e.g., turbine parameters)
Standard algorithms assume no cost for switching their decisions at every round, but in many practical applications, there is a cost associated with such changes, which should be minimized.
arXiv Detail & Related papers (2022-10-14T20:19:32Z) - Optimistic Optimization of Gaussian Process Samples [30.226274682578172]
A competing, computationally more efficient, global optimization framework is optimistic optimization, which exploits prior knowledge about the geometry of the search space in form of a dissimilarity function.
We argue that there is a new research domain between geometric and probabilistic search, i.e. methods that run drastically faster than traditional Bayesian optimization, while retaining some of the crucial functionality of Bayesian optimization.
arXiv Detail & Related papers (2022-09-02T09:06:24Z) - Surrogate modeling for Bayesian optimization beyond a single Gaussian
process [62.294228304646516]
We propose a novel Bayesian surrogate model to balance exploration with exploitation of the search space.
To endow function sampling with scalability, random feature-based kernel approximation is leveraged per GP model.
To further establish convergence of the proposed EGP-TS to the global optimum, analysis is conducted based on the notion of Bayesian regret.
arXiv Detail & Related papers (2022-05-27T16:43:10Z) - Sparse Bayesian Optimization [16.867375370457438]
We present several regularization-based approaches that allow us to discover sparse and more interpretable configurations.
We propose a novel differentiable relaxation based on homotopy continuation that makes it possible to target sparsity.
We show that we are able to efficiently optimize for sparsity.
arXiv Detail & Related papers (2022-03-03T18:25:33Z) - Preferential Batch Bayesian Optimization [16.141259199997005]
preferential batch Bayesian optimization (PBBO) is a new framework that allows finding the optimum of a latent function of interest.
We show how the acquisitions developed under this framework generalize and augment previous approaches in Bayesian optimization.
arXiv Detail & Related papers (2020-03-25T14:59:15Z) - Finding Optimal Points for Expensive Functions Using Adaptive RBF-Based
Surrogate Model Via Uncertainty Quantification [11.486221800371919]
We propose a novel global optimization framework using adaptive Radial Basis Functions (RBF) based surrogate model via uncertainty quantification.
It first employs an RBF-based Bayesian surrogate model to approximate the true function, where the parameters of the RBFs can be adaptively estimated and updated each time a new point is explored.
It then utilizes a model-guided selection criterion to identify a new point from a candidate set for function evaluation.
arXiv Detail & Related papers (2020-01-19T16:15:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.