論文の概要: Neural Networks from Biological to Artificial and Vice Versa
- arxiv url: http://arxiv.org/abs/2306.04449v1
- Date: Mon, 5 Jun 2023 17:30:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-08 14:12:49.927564
- Title: Neural Networks from Biological to Artificial and Vice Versa
- Title(参考訳): 生体から人工までのニューラルネットワークとその逆
- Authors: Abdullatif Baba
- Abstract要約: この論文の主な貢献は、死んだニューロンが人工ニューラルネットワーク(ANN)の性能に与える影響についての研究である。
本研究の目的は, 生物学的領域における発見の潜在的適用性を評価することであり, 期待される結果は, 神経疾患に対する効果的な治療戦略の開発に重要な影響を及ぼす可能性がある。
- 参考スコア(独自算出の注目度): 6.85316573653194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we examine how deep learning can be utilized to investigate
neural health and the difficulties in interpreting neurological analyses within
algorithmic models. The key contribution of this paper is the investigation of
the impact of a dead neuron on the performance of artificial neural networks
(ANNs). Therefore, we conduct several tests using different training algorithms
and activation functions to identify the precise influence of the training
process on neighboring neurons and the overall performance of the ANN in such
cases. The aim is to assess the potential application of the findings in the
biological domain, the expected results may have significant implications for
the development of effective treatment strategies for neurological disorders.
Successive training phases that incorporate visual and acoustic data derived
from past social and familial experiences could be suggested to achieve this
goal. Finally, we explore the conceptual analogy between the Adam optimizer and
the learning process of the brain by delving into the specifics of both systems
while acknowledging their fundamental differences.
- Abstract(参考訳): 本稿では,深層学習を用いて神経の健康とアルゴリズムモデルにおける神経学的解析の解釈の難しさについて検討する。
この論文の重要な貢献は、死んだニューロンが人工ニューラルネットワーク(ANN)の性能に与える影響を調査することである。
そこで我々は,異なるトレーニングアルゴリズムとアクティベーション関数を用いて,近隣ニューロンに対するトレーニングプロセスの正確な影響と,それらの場合のANNの全体的な性能を明らかにする。
本研究の目的は, 生物学的領域における発見の潜在的適用性を評価することであり, 期待される結果は, 神経疾患に対する効果的な治療戦略の開発に重要な影響を及ぼす可能性がある。
過去の社会的および家族的経験から得られた視覚的および音響的データを含む連続的なトレーニングフェーズが、この目標を達成するために提案されている。
最後に,Adamオプティマイザと脳の学習過程の概念的類似性について,両システムの特異点を掘り下げ,基本的差異を認めながら検討する。
関連論文リスト
- Statistical tuning of artificial neural network [0.0]
本研究では、ニューラルネットワークの理解を強化する方法を紹介し、特に1つの隠蔽層を持つモデルに焦点を当てる。
本稿では,入力ニューロンの意義を統計的に評価し,次元減少のためのアルゴリズムを提案する。
この研究は、ニューラルネットワークを解釈するための堅牢な統計フレームワークを提示することにより、説明可能な人工知能の分野を前進させる。
論文 参考訳(メタデータ) (2024-09-24T19:47:03Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - Probing Biological and Artificial Neural Networks with Task-dependent
Neural Manifolds [12.037840490243603]
本稿では,ニューラルネットワークの内部機構について,ニューラル集団幾何学のレンズを用いて検討する。
学習目的の違いが,これらのモデルの組織戦略の違いにどのように影響するかを定量的に評価する。
これらの分析は、ニューラルネットワークにおける機械的および規範的理論を神経集団幾何学を通してブリッジする強力な方向を示す。
論文 参考訳(メタデータ) (2023-12-21T20:40:51Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Neuronal Learning Analysis using Cycle-Consistent Adversarial Networks [4.874780144224057]
我々は、-CycleGANと呼ばれる深層生成モデルを用いて、前学習と後学習の神経活動の間の未知のマッピングを学習する。
我々は,カルシウム蛍光信号を前処理し,訓練し,評価するためのエンドツーエンドパイプラインを開発し,その結果の深層学習モデルを解釈する手法を開発した。
論文 参考訳(メタデータ) (2021-11-25T13:24:19Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
本稿では、神経変性疾患のパーソナライズされた予測モデリングのための、確率的プログラムによる深層カーネル学習手法を提案する。
我々の分析は、ニューラルネットワークとシンボリック機械学習のアプローチのスペクトルを考慮する。
我々は、アルツハイマー病の予測問題について評価を行い、深層学習を超越した結果を得た。
論文 参考訳(メタデータ) (2020-09-16T15:16:03Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
本稿では,RNNの入出力動作だけでなく,内部ネットワークのダイナミクスも学習できる新しいトレーニング戦略を提案する。
提案手法は、RNNを訓練し、生理学的にインスパイアされた神経モデルの内部ダイナミクスと出力信号を同時に再現する。
注目すべきは、トレーニングアルゴリズムがニューロンの小さなサブセットの活性に依存する場合であっても、内部動力学の再現が成功することである。
論文 参考訳(メタデータ) (2020-05-05T14:16:54Z) - A Developmental Neuro-Robotics Approach for Boosting the Recognition of
Handwritten Digits [91.3755431537592]
近年のエビデンスでは、子どもの体現戦略をシミュレーションすることで、マシンインテリジェンスも改善できることが示されている。
本稿では,発達神経ロボティクスの文脈における畳み込みニューラルネットワークモデルへの具体的戦略の適用について検討する。
論文 参考訳(メタデータ) (2020-03-23T14:55:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。