論文の概要: Improving neural network representations using human similarity
judgments
- arxiv url: http://arxiv.org/abs/2306.04507v2
- Date: Tue, 26 Sep 2023 09:32:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-27 17:46:31.821122
- Title: Improving neural network representations using human similarity
judgments
- Title(参考訳): ヒト類似性判定を用いたニューラルネットワーク表現の改善
- Authors: Lukas Muttenthaler and Lorenz Linhardt and Jonas Dippel and Robert A.
Vandermeulen and Katherine Hermann and Andrew K. Lampinen and Simon Kornblith
- Abstract要約: 本研究では,地球構造を人間の類似性判定と線形に整列させることによって,世界構造を監督する影響について検討する。
局所構造を保ちながら表現のグローバルな構造を整列する新しい手法を提案する。
この結果から, 人間の視覚表現は, ごく少数の例から学習しやすく, グローバルに組織化されていることが示唆された。
- 参考スコア(独自算出の注目度): 33.62351833204206
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks have reached human-level performance on many computer
vision tasks. However, the objectives used to train these networks enforce only
that similar images are embedded at similar locations in the representation
space, and do not directly constrain the global structure of the resulting
space. Here, we explore the impact of supervising this global structure by
linearly aligning it with human similarity judgments. We find that a naive
approach leads to large changes in local representational structure that harm
downstream performance. Thus, we propose a novel method that aligns the global
structure of representations while preserving their local structure. This
global-local transform considerably improves accuracy across a variety of
few-shot learning and anomaly detection tasks. Our results indicate that human
visual representations are globally organized in a way that facilitates
learning from few examples, and incorporating this global structure into neural
network representations improves performance on downstream tasks.
- Abstract(参考訳): ディープニューラルネットワークは多くのコンピュータビジョンタスクで人間レベルのパフォーマンスに達している。
しかし、これらのネットワークを訓練するために使用される目的は、同様の画像が表現空間内の同様の場所に埋め込まれていることのみを強制し、結果空間のグローバルな構造を直接制約しない。
本稿では,このグローバル構造を人間の類似性判断と線形に整合させることによって,その影響を考察する。
直感的なアプローチは、下流のパフォーマンスを損なう局所的な表現構造に大きな変化をもたらす。
そこで本研究では,局所構造を保ちながら表現のグローバル構造を整列する手法を提案する。
このグローバルローカル変換は、さまざまな少数ショット学習と異常検出タスクの精度を大幅に向上させる。
その結果、人間の視覚的表現は、少数の例から学習しやすく、このグローバルな構造をニューラルネットワーク表現に組み込むことで、下流タスクのパフォーマンスを向上させることが示唆された。
関連論文リスト
- Generalization emerges from local optimization in a self-organized learning network [0.0]
我々は,グローバルなエラー関数に頼ることなく,局所最適化ルールのみによって駆動される,教師付き学習ネットワーク構築のための新しいパラダイムを設計・分析する。
我々のネットワークは、ルックアップテーブルの形で、ノードに新しい知識を正確かつ瞬時に保存する。
本稿では,学習例数が十分に大きくなると,アルゴリズムによって生成されたネットワークが完全な一般化状態に体系的に到達する,分類タスクの多くの例を示す。
我々は状態変化のダイナミクスについて報告し、それが突然であり、従来の学習ネットワークですでに観察されている現象である1次相転移の特徴を持つことを示す。
論文 参考訳(メタデータ) (2024-10-03T15:32:08Z) - Locally Supervised Learning with Periodic Global Guidance [19.41730292017383]
ニューラルネットワークの局所的ロスに基づくトレーニングにおいて,グローバルな目的を反復的に再現するために,周期的ガイド付き局所学習(PGL)を提案する。
本稿では,メモリフットプリントが低い場合に,簡単な周期的ガイダンス方式によって大幅な性能向上が期待できることを示す。
論文 参考訳(メタデータ) (2022-08-01T13:06:26Z) - Deep face recognition with clustering based domain adaptation [57.29464116557734]
そこで本研究では,ターゲットドメインとソースがクラスを共有しない顔認識タスクを対象とした,クラスタリングに基づく新しいドメイン適応手法を提案する。
本手法は,特徴領域をグローバルに整列させ,その一方で,対象クラスタを局所的に識別することで,識別対象特徴を効果的に学習する。
論文 参考訳(メタデータ) (2022-05-27T12:29:11Z) - A Unified Architecture of Semantic Segmentation and Hierarchical
Generative Adversarial Networks for Expression Manipulation [52.911307452212256]
セマンティックセグメンテーションと階層的GANの統一アーキテクチャを開発する。
我々のフレームワークのユニークな利点は、将来的なセマンティックセグメンテーションネットワーク条件を生成モデルに渡すことである。
我々は,AffectNetとRaFDの2つの難解な表情翻訳ベンチマークとセマンティックセグメンテーションベンチマークであるCelebAMask-HQについて評価を行った。
論文 参考訳(メタデータ) (2021-12-08T22:06:31Z) - Network Embedding via Deep Prediction Model [25.727377978617465]
本稿では,深層予測モデルを用いて構造化ネットワーク上での転送挙動を捕捉するネットワーク埋め込みフレームワークを提案する。
ネットワーク構造埋め込み層は、Long Short-Term Memory NetworkやRecurrent Neural Networkなど、従来の深部予測モデルに付加される。
ソーシャルネットワーク, 引用ネットワーク, バイオメディカルネットワーク, 協調ネットワーク, 言語ネットワークなど, さまざまなデータセットについて実験を行った。
論文 参考訳(メタデータ) (2021-04-27T16:56:00Z) - Joint Learning of Neural Transfer and Architecture Adaptation for Image
Recognition [77.95361323613147]
現在の最先端の視覚認識システムは、大規模データセット上でニューラルネットワークを事前トレーニングし、より小さなデータセットでネットワーク重みを微調整することに依存している。
本稿では,各ドメインタスクに適応したネットワークアーキテクチャの動的適応と,効率と効率の両面で重みの微調整の利点を実証する。
本手法は,ソースドメインタスクでスーパーネットトレーニングを自己教師付き学習に置き換え,下流タスクで線形評価を行うことにより,教師なしパラダイムに容易に一般化することができる。
論文 参考訳(メタデータ) (2021-03-31T08:15:17Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Unsupervised Metric Relocalization Using Transform Consistency Loss [66.19479868638925]
メートル法再ローカライズを行うためのトレーニングネットワークは、従来、正確な画像対応が必要である。
地図内のクエリ画像のローカライズは、登録に使用される参照画像に関係なく、同じ絶対的なポーズを与えるべきである。
提案手法は, 限られた地下構造情報が得られる場合に, 他の教師あり手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-01T19:24:27Z) - A U-Net Based Discriminator for Generative Adversarial Networks [86.67102929147592]
GAN(Generative Adversarial Network)のための代替U-Netベースの識別器アーキテクチャを提案する。
提案アーキテクチャにより,合成画像のグローバルコヒーレンスを維持しつつ,画素単位の詳細なフィードバックを生成元に提供することができる。
斬新な判別器は、標準分布と画像品質の指標の観点から、最先端の技術を向上する。
論文 参考訳(メタデータ) (2020-02-28T11:16:54Z) - Global and Local Feature Learning for Ego-Network Analysis [0.7661062091984316]
ego-networkでは、個人(ego)が異なるグループ(社会円)で友人(alter)を組織する。
深層学習による言語モデリングの最近の進歩は,ネットワーク表現を学習するための新しい手法にインスピレーションを与えている。
社会円予測の課題は,我々の技術が生み出すグローバルな特徴とローカルな特徴の組み合わせによってもたらされることを示す。
論文 参考訳(メタデータ) (2020-02-16T21:35:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。