論文の概要: Optimal sensor placement for reconstructing wind pressure field around
buildings using compressed sensing
- arxiv url: http://arxiv.org/abs/2306.04518v1
- Date: Wed, 7 Jun 2023 15:29:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-08 13:40:28.102399
- Title: Optimal sensor placement for reconstructing wind pressure field around
buildings using compressed sensing
- Title(参考訳): 圧縮センシングを用いた建物周辺の風圧場復元のための最適センサ配置
- Authors: Xihaier Luo and Ahsan Kareem and Shinjae Yoo
- Abstract要約: 本稿では,高層建築物上の風圧の空力特性を再構成するデータ駆動スパースセンサ選択アルゴリズムを提案する。
提案手法は, 高層建築物の空力特性を疎測定位置から再現する。
- 参考スコア(独自算出の注目度): 3.3946853660795884
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deciding how to optimally deploy sensors in a large, complex, and spatially
extended structure is critical to ensure that the surface pressure field is
accurately captured for subsequent analysis and design. In some cases,
reconstruction of missing data is required in downstream tasks such as the
development of digital twins. This paper presents a data-driven sparse sensor
selection algorithm, aiming to provide the most information contents for
reconstructing aerodynamic characteristics of wind pressures over tall building
structures parsimoniously. The algorithm first fits a set of basis functions to
the training data, then applies a computationally efficient QR algorithm that
ranks existing pressure sensors in order of importance based on the state
reconstruction to this tailored basis. The findings of this study show that the
proposed algorithm successfully reconstructs the aerodynamic characteristics of
tall buildings from sparse measurement locations, generating stable and optimal
solutions across a range of conditions. As a result, this study serves as a
promising first step toward leveraging the success of data-driven and machine
learning algorithms to supplement traditional genetic algorithms currently used
in wind engineering.
- Abstract(参考訳): センサーを大規模で複雑で空間的に拡張した構造に最適に配置する方法を決定することは、その後の分析と設計のために表面圧力場を正確に捉えるために重要である。
デジタル双生児の発達など、下流業務において欠落したデータの再構築が必要である場合もある。
本稿では,高層建築物上の風圧の空力特性を並列に再現するための情報コンテンツの最大化を目的とした,データ駆動スパースセンサ選択アルゴリズムを提案する。
このアルゴリズムは、まず一連の基底関数をトレーニングデータに適合させ、その後、既存の圧力センサを、この調整された基底の状態再構成に基づいて重要順にランク付けする計算効率の高いqrアルゴリズムを適用する。
本研究の結果から,高層建築物の空力特性を平滑な測定位置から再現し,様々な条件下で安定かつ最適解を生成することができた。
その結果、この研究はデータ駆動および機械学習アルゴリズムの成功を活用し、現在風力工学で使われている伝統的な遺伝的アルゴリズムを補完する有望な第一歩となる。
関連論文リスト
- A physics-driven sensor placement optimization methodology for temperature field reconstruction [9.976807723785006]
温度場再構成のための物理駆動型センサ配置最適化(PSPO)手法を提案する。
PSPO法はランダム選択法と均一選択法を大きく上回り、ほぼ一桁の精度で復元精度を向上させる。
論文 参考訳(メタデータ) (2024-09-27T03:26:38Z) - Localized Gaussians as Self-Attention Weights for Point Clouds Correspondence [92.07601770031236]
本稿では,エンコーダのみのトランスフォーマーアーキテクチャのアテンションヘッドにおける意味的意味パターンについて検討する。
注意重みの修正はトレーニングプロセスの促進だけでなく,最適化の安定性の向上にも寄与する。
論文 参考訳(メタデータ) (2024-09-20T07:41:47Z) - OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
学習可能なクエリの集合を用いて、占有された場所とクラスを同時に予測するフレームワークを提案する。
OPUSには、モデルパフォーマンスを高めるための非自明な戦略が組み込まれている。
最も軽量なモデルではOcc3D-nuScenesデータセットの2倍 FPS に優れたRayIoUが得られる一方、最も重いモデルは6.1 RayIoUを上回ります。
論文 参考訳(メタデータ) (2024-09-14T07:44:22Z) - Depth Estimation Algorithm Based on Transformer-Encoder and Feature
Fusion [3.490784807576072]
この研究は、自然言語処理の成功で有名なトランスフォーマーモデルを採用し、深度推定タスクのための視覚データにおける複雑な空間関係をキャプチャする。
この研究の重要な革新は、構造類似度指標尺度(SSIM)と平均正方形誤差(MSE)を組み合わせた複合損失関数の統合である。
本研究は,MSEに基づく損失によく見られる過度な平滑化の課題に対処し,精度だけでなく,入力画像との整合性も維持する深度マップの予測能力を向上させる。
論文 参考訳(メタデータ) (2024-03-03T02:10:00Z) - Optimization of a Hydrodynamic Computational Reservoir through Evolution [58.720142291102135]
我々は,スタートアップが開発中の流体力学系のモデルと,計算貯水池としてインターフェースする。
我々は、進化探索アルゴリズムを用いて、読み出し時間と入力を波の振幅や周波数にどのようにマッピングするかを最適化した。
この貯水池システムに進化的手法を適用することで、手作業パラメータを用いた実装と比較して、XNORタスクの分離性が大幅に向上した。
論文 参考訳(メタデータ) (2023-04-20T19:15:02Z) - Machine Learning to Predict Aerodynamic Stall [0.0]
畳み込みオートエンコーダは、翼の空気力学シミュレーションのデータベースを用いて訓練される。
目的は, 屋台を予測し, 翼圧力分布の線形応答と非線形応答を区別するオートエンコーダの能力を調べることである。
論文 参考訳(メタデータ) (2022-07-07T16:50:10Z) - Information Entropy Initialized Concrete Autoencoder for Optimal Sensor
Placement and Reconstruction of Geophysical Fields [58.720142291102135]
そこで本稿では,スパーク計測による地場再構成のためのセンサ配置の最適化について提案する。
本研究では, (a) 温度と (b) バレンツ海周辺の塩分濃度場とスバルバルド諸島群を例に示す。
得られた最適センサ位置は, 物理的解釈が明確であり, 海流の境界に対応することが判明した。
論文 参考訳(メタデータ) (2022-06-28T12:43:38Z) - A SAR speckle filter based on Residual Convolutional Neural Networks [68.8204255655161]
本研究では,Convolutional Neural Networks(CNN)に基づく深層学習(DL)アルゴリズムを用いて,Sentinel-1データからスペックルノイズをフィルタリングする新しい手法を提案する。
得られた結果は、技術の現状と比較すると、ピーク信号対雑音比(PSNR)と構造類似度指数(SSIM)の点で明確な改善を示しています。
論文 参考訳(メタデータ) (2021-04-19T14:43:07Z) - An AI-Assisted Design Method for Topology Optimization Without
Pre-Optimized Training Data [68.8204255655161]
トポロジ最適化に基づくAI支援設計手法を提示し、最適化された設計を直接的に得ることができる。
設計は、境界条件と入力データとしての充填度に基づいて、人工ニューラルネットワーク、予測器によって提供される。
論文 参考訳(メタデータ) (2020-12-11T14:33:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。