論文の概要: Topology-aware Reinforcement Feature Space Reconstruction for Graph Data
- arxiv url: http://arxiv.org/abs/2411.05742v1
- Date: Fri, 08 Nov 2024 18:01:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:55:29.852878
- Title: Topology-aware Reinforcement Feature Space Reconstruction for Graph Data
- Title(参考訳): グラフデータのためのトポロジ対応強化特徴空間再構成
- Authors: Wangyang Ying, Haoyue Bai, Kunpeng Liu, Yanjie Fu,
- Abstract要約: 優れた機能領域の再構築は、データのAI能力の向上、モデルの一般化の改善、下流MLモデルの可用性の向上に不可欠である。
我々は、トポロジ対応強化学習を用いて、グラフデータの特徴空間再構成を自動化し、最適化する。
提案手法では,コア部分グラフ抽出とグラフニューラルネットワーク(GNN)の併用により,トポロジ的特徴を符号化し,計算複雑性を低減する。
- 参考スコア(独自算出の注目度): 22.5530178427691
- License:
- Abstract: Feature space is an environment where data points are vectorized to represent the original dataset. Reconstructing a good feature space is essential to augment the AI power of data, improve model generalization, and increase the availability of downstream ML models. Existing literature, such as feature transformation and feature selection, is labor-intensive (e.g., heavy reliance on empirical experience) and mostly designed for tabular data. Moreover, these methods regard data samples as independent, which ignores the unique topological structure when applied to graph data, thus resulting in a suboptimal reconstruction feature space. Can we consider the topological information to automatically reconstruct feature space for graph data without heavy experiential knowledge? To fill this gap, we leverage topology-aware reinforcement learning to automate and optimize feature space reconstruction for graph data. Our approach combines the extraction of core subgraphs to capture essential structural information with a graph neural network (GNN) to encode topological features and reduce computing complexity. Then we introduce three reinforcement agents within a hierarchical structure to systematically generate meaningful features through an iterative process, effectively reconstructing the feature space. This framework provides a principled solution for attributed graph feature space reconstruction. The extensive experiments demonstrate the effectiveness and efficiency of including topological awareness.
- Abstract(参考訳): 特徴空間は、データポイントが元のデータセットを表現するためにベクトル化される環境である。
優れた機能領域の再構築は、データのAI能力の向上、モデルの一般化の改善、下流MLモデルの可用性の向上に不可欠である。
特徴変換や特徴選択といった既存の文献は、労働集約的(例えば、経験的経験に大きく依存する)であり、主に表データ用に設計されている。
さらに、これらの手法は、データサンプルを独立とみなし、グラフデータに適用した場合に固有のトポロジ構造を無視し、その結果、準最適再構成特徴空間となる。
実験知識のないグラフデータの特徴空間を自動再構成するトポロジ的情報を考えることは可能か?
このギャップを埋めるために、トポロジ対応強化学習を活用して、グラフデータの特徴空間再構成を自動化し、最適化する。
提案手法では,コア部分グラフ抽出とグラフニューラルネットワーク(GNN)の併用により,トポロジ的特徴を符号化し,計算複雑性を低減する。
次に,3つの強化剤を階層構造内に導入し,反復的プロセスを通じて意味のある特徴を体系的に生成し,特徴空間を効果的に再構築する。
このフレームワークは、属性付きグラフ特徴空間再構成のための原則付きソリューションを提供する。
広範な実験は、トポロジカルな意識を含めることの有効性と効率を実証している。
関連論文リスト
- A Cosmic-Scale Benchmark for Symmetry-Preserving Data Processing [1.96862953848735]
局所的なクラスタリング環境と長距離相関を同時にキャプチャするグラフニューラルネットワークの能力をベンチマークする。
現在のアーキテクチャでは、ドメイン固有のベースラインと同様に、長距離相関から情報を取得することができません。
論文 参考訳(メタデータ) (2024-10-27T16:58:48Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
グラフ構造を先行として扱うことで,特徴中心の事前学習の視点を導入する。
我々のフレームワークであるGraph Sequence Pretraining with Transformer (GSPT)はランダムウォークを通してノードコンテキストをサンプリングする。
GSPTはノード分類とリンク予測の両方に容易に適応でき、様々なデータセットで有望な経験的成功を示す。
論文 参考訳(メタデータ) (2024-06-19T22:30:08Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
本稿では,属性付きグラフデータに対する新しいDeep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE)を提案する。
提案手法は,最先端のベースラインアルゴリズムを,一般的なデータセット間でのダウンストリームタスクの差を大きく越える。
論文 参考訳(メタデータ) (2024-01-12T17:57:07Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
グラフ埋め込みの信頼性は、連続空間の幾何がグラフ構造とどの程度一致しているかに依存する。
我々は、この問題を解決することができる、ソフト多様体と呼ばれる新しい多様体のクラスを導入する。
グラフ埋め込みにソフト多様体を用いることで、複雑なデータセット上のデータ解析における任意のタスクを追求するための連続空間を提供できる。
論文 参考訳(メタデータ) (2023-11-29T12:48:33Z) - On Characterizing the Evolution of Embedding Space of Neural Networks
using Algebraic Topology [9.537910170141467]
特徴埋め込み空間のトポロジがベッチ数を介してよく訓練されたディープニューラルネットワーク(DNN)の層を通過するとき、どのように変化するかを検討する。
深度が増加するにつれて、トポロジカルに複雑なデータセットが単純なデータセットに変換され、ベッチ数はその最小値に達することが示される。
論文 参考訳(メタデータ) (2023-11-08T10:45:12Z) - Feature Expansion for Graph Neural Networks [26.671557021142572]
グラフニューラルネットワークを決定された特徴空間とトレーニング可能な重みに分解する。
理論的には、特徴空間は繰り返しの集合によって線形に相関する傾向がある。
これらの知見により,1)特徴部分空間の平坦化,2)特徴空間の拡張のための構造主成分を提案する。
論文 参考訳(メタデータ) (2023-05-10T13:45:57Z) - Structure-Preserving Graph Representation Learning [43.43429108503634]
本研究では,グラフの構造情報を完全にキャプチャする構造保存グラフ表現学習(SPGRL)手法を提案する。
具体的には、元のグラフの不確かさと誤情報を減らすために、k-Nearest Neighbor法による補完的なビューとして特徴グラフを構築する。
本手法は、半教師付きノード分類タスクにおいて非常に優れた性能を示し、グラフ構造やノード特徴に対するノイズ摂動下での堅牢性に優れる。
論文 参考訳(メタデータ) (2022-09-02T02:49:19Z) - Group-wise Reinforcement Feature Generation for Optimal and Explainable
Representation Space Reconstruction [25.604176830832586]
我々は表現空間の再構成をネストした特徴生成と選択の対話的なプロセスに再構成する。
我々は、機能群、操作群、および他の機能群を横断して新機能を生成するグループワイズ生成戦略を設計する。
システムの有効性, 効率, トレーサビリティ, 明示性を実証するための広範な実験を行った。
論文 参考訳(メタデータ) (2022-05-28T21:34:14Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
グラフ表現と学習を伴う新しい学習パラダイムを提案する。
本フレームワークは,1) 下位モデルとしてのバックボーンネットワーク(フィードフォワードニューラルネットなど)が,予測ラベルの入力および出力として機能を取り,2) 上位モデルとしてのグラフニューラルネットワークが,観測データから構築された特徴データグラフをメッセージパッシングすることで,新機能の埋め込みを外挿することを学ぶ。
論文 参考訳(メタデータ) (2021-10-09T09:02:45Z) - Local Augmentation for Graph Neural Networks [78.48812244668017]
本稿では,局所的な部分グラフ構造によりノード特性を向上する局所拡張を提案する。
局所的な拡張に基づいて、プラグイン・アンド・プレイ方式で任意のGNNモデルに適用可能な、LA-GNNという新しいフレームワークをさらに設計する。
論文 参考訳(メタデータ) (2021-09-08T18:10:08Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
論文 参考訳(メタデータ) (2020-10-19T21:51:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。