論文の概要: On the Reliability of Watermarks for Large Language Models
- arxiv url: http://arxiv.org/abs/2306.04634v1
- Date: Wed, 7 Jun 2023 17:58:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-08 13:03:32.320205
- Title: On the Reliability of Watermarks for Large Language Models
- Title(参考訳): 大規模言語モデルの透かしの信頼性について
- Authors: John Kirchenbauer, Jonas Geiping, Yuxin Wen, Manli Shu, Khalid
Saifullah, Kezhi Kong, Kasun Fernando, Aniruddha Saha, Micah Goldblum and Tom
Goldstein
- Abstract要約: 大規模言語モデル(LLM)が日々の使用にデプロイされ、大量のテキストを生成する位置に配置されている。
ウォーターマーキングはそのような害を緩和するためのシンプルで効果的な戦略である。
野生の現実的な環境での透かしはどの程度信頼できるのか?
- 参考スコア(独自算出の注目度): 50.01830399815094
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) are now deployed to everyday use and positioned
to produce large quantities of text in the coming decade. Machine-generated
text may displace human-written text on the internet and has the potential to
be used for malicious purposes, such as spearphishing attacks and social media
bots. Watermarking is a simple and effective strategy for mitigating such harms
by enabling the detection and documentation of LLM-generated text. Yet, a
crucial question remains: How reliable is watermarking in realistic settings in
the wild? There, watermarked text might be mixed with other text sources,
paraphrased by human writers or other language models, and used for
applications in a broad number of domains, both social and technical. In this
paper, we explore different detection schemes, quantify their power at
detecting watermarks, and determine how much machine-generated text needs to be
observed in each scenario to reliably detect the watermark. We especially
highlight our human study, where we investigate the reliability of watermarking
when faced with human paraphrasing. We compare watermark-based detection to
other detection strategies, finding overall that watermarking is a reliable
solution, especially because of its sample complexity - for all attacks we
consider, the watermark evidence compounds the more examples are given, and the
watermark is eventually detected.
- Abstract(参考訳): 大規模言語モデル(LLM)は現在、日々の使用にデプロイされ、今後10年間で大量のテキストを生成する位置に配置されている。
マシン生成テキストは、インターネット上で人間が書いたテキストを破棄する可能性があり、スピアフィッシング攻撃やソーシャルメディアボットなど、悪意のある目的で使用される可能性がある。
ウォーターマーキングは、LCM生成テキストの検出と文書化を可能にすることで、そのような害を緩和するためのシンプルで効果的な戦略である。
しかし、重要な疑問が残る:野生の現実的な環境で、ウォーターマーキングはどの程度信頼できるのか?
そこでは、透かし付きテキストは他のテキストソースと混同され、人間の作家や他の言語モデルによって言い換えられ、社会的および技術的両方の幅広い領域での応用に使用される。
本稿では,異なる検出方式を検討し,透かし検出のパワーを定量化し,各シナリオにおいてマシン生成テキストをどの程度観察する必要があるかを判定し,透かしを確実に検出する。
特に,人間のパラフレージングに直面する際の透かしの信頼性について検討した。
我々は、透かしに基づく検出と他の検出戦略を比較し、透かしが信頼性の高い解であること、特にサンプルの複雑さのため、透かしの証拠はより多くの例が与えられ、最終的に透かしが検出される。
関連論文リスト
- Revisiting the Robustness of Watermarking to Paraphrasing Attacks [10.68370011459729]
多くの最近の透かし技術は、後に検出できる出力に信号を埋め込むためにLMの出力確率を変更する。
ブラックボックス型透かしモデルから限られた世代にしかアクセスできないため,パラフレーズ攻撃による透かし検出の回避効果を大幅に向上させることができる。
論文 参考訳(メタデータ) (2024-11-08T02:22:30Z) - Efficiently Identifying Watermarked Segments in Mixed-Source Texts [35.437251393372954]
部分透かし検出のための2つの新しい手法を提案する。
まず,長文に透かしセグメントが存在するかどうかを判定するための幾何被覆検出フレームワークを開発する。
第2に,テキスト内の透かしセグメントの正確な位置を特定できる適応型オンライン学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-04T16:58:41Z) - Can Watermarked LLMs be Identified by Users via Crafted Prompts? [55.460327393792156]
この研究は、透かし付き大言語モデル(LLM)の非受容性を初めて研究したものである。
我々は、よく設計されたプロンプトを通して透かしを検出する、Water-Probeと呼ばれる識別アルゴリズムを設計する。
実験の結果、ほとんどの主流の透かしアルゴリズムは、よく設計されたプロンプトと容易に識別できることがわかった。
論文 参考訳(メタデータ) (2024-10-04T06:01:27Z) - Less is More: Sparse Watermarking in LLMs with Enhanced Text Quality [27.592486717044455]
テキストに分散した生成されたトークンの小さなサブセットに透かしを適用することで、このトレードオフを緩和することを目的とした新しいタイプの透かしであるスパース透かしを提案する。
提案手法は,従来の透かし手法よりも高い品質のテキストを生成しつつ,高い検出性を実現することを示す。
論文 参考訳(メタデータ) (2024-07-17T18:52:12Z) - On the Learnability of Watermarks for Language Models [80.97358663708592]
言語モデルが透かし付きテキストを生成するために直接学習できるかどうかを問う。
本稿では,教師モデルとして振舞う学生モデルを訓練する透かし蒸留法を提案する。
モデルは、高い検出性で透かし付きテキストを生成することができる。
論文 参考訳(メタデータ) (2023-12-07T17:41:44Z) - Mark My Words: Analyzing and Evaluating Language Model Watermarks [8.025719866615333]
この研究は、画像やモデル透かしとは対照的に、出力透かし技術に焦点を当てている。
品質、サイズ(透かしを検出するのに必要となるトークンの数)、抵抗の改ざんという3つの主要な指標に注目します。
論文 参考訳(メタデータ) (2023-12-01T01:22:46Z) - I Know You Did Not Write That! A Sampling Based Watermarking Method for
Identifying Machine Generated Text [0.0]
機械生成テキストを検出するための新しい透かし手法を提案する。
我々の方法は生成されたテキストにユニークなパターンを埋め込む。
本稿では,透かしがテキスト品質にどのように影響するかを示し,提案手法を最先端の透かし法と比較する。
論文 参考訳(メタデータ) (2023-11-29T20:04:57Z) - An Unforgeable Publicly Verifiable Watermark for Large Language Models [84.2805275589553]
現在の透かし検出アルゴリズムは、透かし生成プロセスで使用される秘密鍵を必要としており、公開検出中にセキュリティ違反や偽造の影響を受ける。
両段階で同じキーを使用するのではなく、2つの異なるニューラルネットワークを用いて透かしの生成と検出を行う。
論文 参考訳(メタデータ) (2023-07-30T13:43:27Z) - Can AI-Generated Text be Reliably Detected? [54.670136179857344]
LLMの規制されていない使用は、盗作、偽ニュースの生成、スパムなど、悪意のある結果をもたらす可能性がある。
最近の研究は、生成されたテキスト出力に存在する特定のモデルシグネチャを使用するか、透かし技術を適用してこの問題に対処しようとしている。
本稿では,これらの検出器は実用シナリオにおいて信頼性が低いことを示す。
論文 参考訳(メタデータ) (2023-03-17T17:53:19Z) - A Watermark for Large Language Models [84.95327142027183]
本稿では,プロプライエタリな言語モデルのための透かしフレームワークを提案する。
透かしはテキストの品質に無視できない影響で埋め込むことができる。
言語モデルAPIやパラメータにアクセスすることなく、効率的なオープンソースアルゴリズムを使って検出することができる。
論文 参考訳(メタデータ) (2023-01-24T18:52:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。