論文の概要: Revisiting the Robustness of Watermarking to Paraphrasing Attacks
- arxiv url: http://arxiv.org/abs/2411.05277v1
- Date: Fri, 08 Nov 2024 02:22:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:55:54.383404
- Title: Revisiting the Robustness of Watermarking to Paraphrasing Attacks
- Title(参考訳): パラフレーズ攻撃に対する透かしのロバスト性の再考
- Authors: Saksham Rastogi, Danish Pruthi,
- Abstract要約: 多くの最近の透かし技術は、後に検出できる出力に信号を埋め込むためにLMの出力確率を変更する。
ブラックボックス型透かしモデルから限られた世代にしかアクセスできないため,パラフレーズ攻撃による透かし検出の回避効果を大幅に向上させることができる。
- 参考スコア(独自算出の注目度): 10.68370011459729
- License:
- Abstract: Amidst rising concerns about the internet being proliferated with content generated from language models (LMs), watermarking is seen as a principled way to certify whether text was generated from a model. Many recent watermarking techniques slightly modify the output probabilities of LMs to embed a signal in the generated output that can later be detected. Since early proposals for text watermarking, questions about their robustness to paraphrasing have been prominently discussed. Lately, some techniques are deliberately designed and claimed to be robust to paraphrasing. However, such watermarking schemes do not adequately account for the ease with which they can be reverse-engineered. We show that with access to only a limited number of generations from a black-box watermarked model, we can drastically increase the effectiveness of paraphrasing attacks to evade watermark detection, thereby rendering the watermark ineffective.
- Abstract(参考訳): インターネットが言語モデル(LM)から生成されたコンテンツで拡散しているという懸念が高まっている中、ウォーターマーキングは、モデルからテキストが生成されたかどうかを認証する原則的な方法として見なされている。
多くの最近の透かし技術は、後に検出できる出力に信号を埋め込むために、LMの出力確率をわずかに修正している。
テキスト透かしの初期の提案以来、パラフレージングに対する堅牢性に関する疑問が顕著に議論されている。
最近では、いくつかの技術は意図的に設計されており、言い換えに頑丈であると主張している。
しかし、このような透かし方式はリバースエンジニアリングの容易さを十分に考慮していない。
我々は,ブラックボックス型透かしモデルから限られた世代にしかアクセスできないため,透かし検出を回避し,透かしの検出を非効率にするためのパラフレーズ攻撃の有効性を大幅に向上させることができることを示した。
関連論文リスト
- Can Watermarked LLMs be Identified by Users via Crafted Prompts? [55.460327393792156]
この研究は、透かし付き大言語モデル(LLM)の非受容性を初めて研究したものである。
我々は、よく設計されたプロンプトを通して透かしを検出する、Water-Probeと呼ばれる識別アルゴリズムを設計する。
実験の結果、ほとんどの主流の透かしアルゴリズムは、よく設計されたプロンプトと容易に識別できることがわかった。
論文 参考訳(メタデータ) (2024-10-04T06:01:27Z) - Watermark Smoothing Attacks against Language Models [40.02225709485305]
我々はスムースな攻撃を導入し、既存の透かし手法がテキストの小さな修正に対して堅牢でないことを示す。
我々の攻撃は幅広い透かし技術の基本的限界を明らかにしている。
論文 参考訳(メタデータ) (2024-07-19T11:04:54Z) - Less is More: Sparse Watermarking in LLMs with Enhanced Text Quality [27.592486717044455]
テキストに分散した生成されたトークンの小さなサブセットに透かしを適用することで、このトレードオフを緩和することを目的とした新しいタイプの透かしであるスパース透かしを提案する。
提案手法は,従来の透かし手法よりも高い品質のテキストを生成しつつ,高い検出性を実現することを示す。
論文 参考訳(メタデータ) (2024-07-17T18:52:12Z) - Adaptive Text Watermark for Large Language Models [8.100123266517299]
プロンプトやモデルの知識を必要とせずに、強力なセキュリティ、堅牢性、および透かしを検出する能力を維持しつつ、高品質な透かしテキストを生成することは困難である。
本稿では,この問題に対処するための適応型透かし手法を提案する。
論文 参考訳(メタデータ) (2024-01-25T03:57:12Z) - On the Learnability of Watermarks for Language Models [80.97358663708592]
言語モデルが透かし付きテキストを生成するために直接学習できるかどうかを問う。
本稿では,教師モデルとして振舞う学生モデルを訓練する透かし蒸留法を提案する。
モデルは、高い検出性で透かし付きテキストを生成することができる。
論文 参考訳(メタデータ) (2023-12-07T17:41:44Z) - Improving the Generation Quality of Watermarked Large Language Models
via Word Importance Scoring [81.62249424226084]
トークンレベルの透かしは、トークン確率分布を変更して生成されたテキストに透かしを挿入する。
この透かしアルゴリズムは、生成中のロジットを変化させ、劣化したテキストの品質につながる可能性がある。
We propose to improve the quality of texts generated by a watermarked language model by Watermarking with Importance Scoring (WIS)。
論文 参考訳(メタデータ) (2023-11-16T08:36:00Z) - On the Reliability of Watermarks for Large Language Models [95.87476978352659]
本研究では,人間による書き直し後の透かしテキストの堅牢性,非透かしLDMによる言い換え,あるいはより長い手書き文書への混在性について検討する。
人や機械の言い回しをしても、透かしは検出可能である。
また、大きな文書に埋め込まれた透かし付きテキストの短いスパンに敏感な新しい検出手法についても検討する。
論文 参考訳(メタデータ) (2023-06-07T17:58:48Z) - A Watermark for Large Language Models [84.95327142027183]
本稿では,プロプライエタリな言語モデルのための透かしフレームワークを提案する。
透かしはテキストの品質に無視できない影響で埋め込むことができる。
言語モデルAPIやパラメータにアクセスすることなく、効率的なオープンソースアルゴリズムを使って検出することができる。
論文 参考訳(メタデータ) (2023-01-24T18:52:59Z) - Fine-tuning Is Not Enough: A Simple yet Effective Watermark Removal
Attack for DNN Models [72.9364216776529]
我々は異なる視点から新しい透かし除去攻撃を提案する。
我々は、知覚不可能なパターン埋め込みと空間レベルの変換を組み合わせることで、単純だが強力な変換アルゴリズムを設計する。
我々の攻撃は、非常に高い成功率で最先端の透かしソリューションを回避できる。
論文 参考訳(メタデータ) (2020-09-18T09:14:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。