論文の概要: On the Reliability of Watermarks for Large Language Models
- arxiv url: http://arxiv.org/abs/2306.04634v4
- Date: Wed, 1 May 2024 21:20:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 22:39:45.480621
- Title: On the Reliability of Watermarks for Large Language Models
- Title(参考訳): 大規模言語モデルにおける透かしの信頼性について
- Authors: John Kirchenbauer, Jonas Geiping, Yuxin Wen, Manli Shu, Khalid Saifullah, Kezhi Kong, Kasun Fernando, Aniruddha Saha, Micah Goldblum, Tom Goldstein,
- Abstract要約: 本研究では,人間による書き直し後の透かしテキストの堅牢性,非透かしLDMによる言い換え,あるいはより長い手書き文書への混在性について検討する。
人や機械の言い回しをしても、透かしは検出可能である。
また、大きな文書に埋め込まれた透かし付きテキストの短いスパンに敏感な新しい検出手法についても検討する。
- 参考スコア(独自算出の注目度): 95.87476978352659
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As LLMs become commonplace, machine-generated text has the potential to flood the internet with spam, social media bots, and valueless content. Watermarking is a simple and effective strategy for mitigating such harms by enabling the detection and documentation of LLM-generated text. Yet a crucial question remains: How reliable is watermarking in realistic settings in the wild? There, watermarked text may be modified to suit a user's needs, or entirely rewritten to avoid detection. We study the robustness of watermarked text after it is re-written by humans, paraphrased by a non-watermarked LLM, or mixed into a longer hand-written document. We find that watermarks remain detectable even after human and machine paraphrasing. While these attacks dilute the strength of the watermark, paraphrases are statistically likely to leak n-grams or even longer fragments of the original text, resulting in high-confidence detections when enough tokens are observed. For example, after strong human paraphrasing the watermark is detectable after observing 800 tokens on average, when setting a 1e-5 false positive rate. We also consider a range of new detection schemes that are sensitive to short spans of watermarked text embedded inside a large document, and we compare the robustness of watermarking to other kinds of detectors.
- Abstract(参考訳): LLMが一般的になるにつれて、機械生成テキストはスパム、ソーシャルメディアボット、価値のないコンテンツでインターネットを溢れさせる可能性がある。
ウォーターマーキングは、LCM生成したテキストの検出と文書化を可能にすることで、そのような害を緩和するためのシンプルで効果的な戦略である。
しかし、重要な疑問が残る: 現実的な環境において、ウォーターマークはどの程度信頼できるのか?
そこで、透かし付きテキストは、ユーザーの要求に合うように修正されるか、検出を避けるために完全に書き換えられる。
本研究では,人間による書き直し後の透かしテキストの堅牢性,非透かしLDMによる言い換え,あるいはより長い手書き文書への混在性について検討する。
人や機械の言い回しをしても、透かしは検出可能である。
これらの攻撃は透かしの強さを薄めるが、パラフレーズは統計学的にn-gramまたは元のテキストのより長い断片をリークする可能性が高く、十分なトークンが観測されると高い信頼度が検出される。
例えば、強い人間の言い回しの後、平均で800個のトークンを観察した後、1e-5の偽陽性率を設定すると、透かしが検出できる。
我々はまた、大きな文書に埋め込まれた透かしの短いテキストに敏感な新しい検出方法についても検討し、透かしの頑健さを他の種類の検出器と比較する。
関連論文リスト
- Revisiting the Robustness of Watermarking to Paraphrasing Attacks [10.68370011459729]
多くの最近の透かし技術は、後に検出できる出力に信号を埋め込むためにLMの出力確率を変更する。
ブラックボックス型透かしモデルから限られた世代にしかアクセスできないため,パラフレーズ攻撃による透かし検出の回避効果を大幅に向上させることができる。
論文 参考訳(メタデータ) (2024-11-08T02:22:30Z) - Efficiently Identifying Watermarked Segments in Mixed-Source Texts [35.437251393372954]
部分透かし検出のための2つの新しい手法を提案する。
まず,長文に透かしセグメントが存在するかどうかを判定するための幾何被覆検出フレームワークを開発する。
第2に,テキスト内の透かしセグメントの正確な位置を特定できる適応型オンライン学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-04T16:58:41Z) - Can Watermarked LLMs be Identified by Users via Crafted Prompts? [55.460327393792156]
この研究は、透かし付き大言語モデル(LLM)の非受容性を初めて研究したものである。
我々は、よく設計されたプロンプトを通して透かしを検出する、Water-Probeと呼ばれる識別アルゴリズムを設計する。
実験の結果、ほとんどの主流の透かしアルゴリズムは、よく設計されたプロンプトと容易に識別できることがわかった。
論文 参考訳(メタデータ) (2024-10-04T06:01:27Z) - Less is More: Sparse Watermarking in LLMs with Enhanced Text Quality [27.592486717044455]
テキストに分散した生成されたトークンの小さなサブセットに透かしを適用することで、このトレードオフを緩和することを目的とした新しいタイプの透かしであるスパース透かしを提案する。
提案手法は,従来の透かし手法よりも高い品質のテキストを生成しつつ,高い検出性を実現することを示す。
論文 参考訳(メタデータ) (2024-07-17T18:52:12Z) - On the Learnability of Watermarks for Language Models [80.97358663708592]
言語モデルが透かし付きテキストを生成するために直接学習できるかどうかを問う。
本稿では,教師モデルとして振舞う学生モデルを訓練する透かし蒸留法を提案する。
モデルは、高い検出性で透かし付きテキストを生成することができる。
論文 参考訳(メタデータ) (2023-12-07T17:41:44Z) - Mark My Words: Analyzing and Evaluating Language Model Watermarks [8.025719866615333]
この研究は、画像やモデル透かしとは対照的に、出力透かし技術に焦点を当てている。
品質、サイズ(透かしを検出するのに必要となるトークンの数)、抵抗の改ざんという3つの主要な指標に注目します。
論文 参考訳(メタデータ) (2023-12-01T01:22:46Z) - I Know You Did Not Write That! A Sampling Based Watermarking Method for
Identifying Machine Generated Text [0.0]
機械生成テキストを検出するための新しい透かし手法を提案する。
我々の方法は生成されたテキストにユニークなパターンを埋め込む。
本稿では,透かしがテキスト品質にどのように影響するかを示し,提案手法を最先端の透かし法と比較する。
論文 参考訳(メタデータ) (2023-11-29T20:04:57Z) - An Unforgeable Publicly Verifiable Watermark for Large Language Models [84.2805275589553]
現在の透かし検出アルゴリズムは、透かし生成プロセスで使用される秘密鍵を必要としており、公開検出中にセキュリティ違反や偽造の影響を受ける。
両段階で同じキーを使用するのではなく、2つの異なるニューラルネットワークを用いて透かしの生成と検出を行う。
論文 参考訳(メタデータ) (2023-07-30T13:43:27Z) - Can AI-Generated Text be Reliably Detected? [54.670136179857344]
LLMの規制されていない使用は、盗作、偽ニュースの生成、スパムなど、悪意のある結果をもたらす可能性がある。
最近の研究は、生成されたテキスト出力に存在する特定のモデルシグネチャを使用するか、透かし技術を適用してこの問題に対処しようとしている。
本稿では,これらの検出器は実用シナリオにおいて信頼性が低いことを示す。
論文 参考訳(メタデータ) (2023-03-17T17:53:19Z) - A Watermark for Large Language Models [84.95327142027183]
本稿では,プロプライエタリな言語モデルのための透かしフレームワークを提案する。
透かしはテキストの品質に無視できない影響で埋め込むことができる。
言語モデルAPIやパラメータにアクセスすることなく、効率的なオープンソースアルゴリズムを使って検出することができる。
論文 参考訳(メタデータ) (2023-01-24T18:52:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。