WOUAF: Weight Modulation for User Attribution and Fingerprinting in Text-to-Image Diffusion Models
- URL: http://arxiv.org/abs/2306.04744v3
- Date: Wed, 24 Apr 2024 04:31:29 GMT
- Title: WOUAF: Weight Modulation for User Attribution and Fingerprinting in Text-to-Image Diffusion Models
- Authors: Changhoon Kim, Kyle Min, Maitreya Patel, Sheng Cheng, Yezhou Yang,
- Abstract summary: This paper introduces a novel approach to model fingerprinting that assigns responsibility for the generated images.
Our method modifies generative models based on each user's unique digital fingerprint, imprinting a unique identifier onto the resultant content that can be traced back to the user.
- Score: 32.29120988096214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of generative models, facilitating the creation of hyper-realistic images from textual descriptions, has concurrently escalated critical societal concerns such as misinformation. Although providing some mitigation, traditional fingerprinting mechanisms fall short in attributing responsibility for the malicious use of synthetic images. This paper introduces a novel approach to model fingerprinting that assigns responsibility for the generated images, thereby serving as a potential countermeasure to model misuse. Our method modifies generative models based on each user's unique digital fingerprint, imprinting a unique identifier onto the resultant content that can be traced back to the user. This approach, incorporating fine-tuning into Text-to-Image (T2I) tasks using the Stable Diffusion Model, demonstrates near-perfect attribution accuracy with a minimal impact on output quality. Through extensive evaluation, we show that our method outperforms baseline methods with an average improvement of 11\% in handling image post-processes. Our method presents a promising and novel avenue for accountable model distribution and responsible use. Our code is available in \url{https://github.com/kylemin/WOUAF}.
Related papers
- Model Integrity when Unlearning with T2I Diffusion Models [11.321968363411145]
We propose approximate Machine Unlearning algorithms to reduce the generation of specific types of images, characterized by samples from a forget distribution''
We then propose unlearning algorithms that demonstrate superior effectiveness in preserving model integrity compared to existing baselines.
arXiv Detail & Related papers (2024-11-04T13:15:28Z) - MMAR: Towards Lossless Multi-Modal Auto-Regressive Probabilistic Modeling [64.09238330331195]
We propose a novel Multi-Modal Auto-Regressive (MMAR) probabilistic modeling framework.
Unlike discretization line of method, MMAR takes in continuous-valued image tokens to avoid information loss.
We show that MMAR demonstrates much more superior performance than other joint multi-modal models.
arXiv Detail & Related papers (2024-10-14T17:57:18Z) - Towards Effective User Attribution for Latent Diffusion Models via Watermark-Informed Blending [54.26862913139299]
We introduce a novel framework Towards Effective user Attribution for latent diffusion models via Watermark-Informed Blending (TEAWIB)
TEAWIB incorporates a unique ready-to-use configuration approach that allows seamless integration of user-specific watermarks into generative models.
Experiments validate the effectiveness of TEAWIB, showcasing the state-of-the-art performance in perceptual quality and attribution accuracy.
arXiv Detail & Related papers (2024-09-17T07:52:09Z) - Enhancing Fingerprint Image Synthesis with GANs, Diffusion Models, and Style Transfer Techniques [0.44739156031315924]
We generate live fingerprints from noise with a variety of methods, and we use image translation techniques to translate live fingerprint images to spoof.
We assess the diversity and realism of the generated live fingerprint images mainly through the Fr'echet Inception Distance (FID) and the False Acceptance Rate (FAR)
arXiv Detail & Related papers (2024-03-20T18:36:30Z) - Regeneration Based Training-free Attribution of Fake Images Generated by
Text-to-Image Generative Models [39.33821502730661]
We present a training-free method to attribute fake images generated by text-to-image models to their source models.
By calculating and ranking the similarity of the test image and the candidate images, we can determine the source of the image.
arXiv Detail & Related papers (2024-03-03T11:55:49Z) - Coarse-to-Fine Latent Diffusion for Pose-Guided Person Image Synthesis [65.7968515029306]
We propose a novel Coarse-to-Fine Latent Diffusion (CFLD) method for Pose-Guided Person Image Synthesis (PGPIS)
A perception-refined decoder is designed to progressively refine a set of learnable queries and extract semantic understanding of person images as a coarse-grained prompt.
arXiv Detail & Related papers (2024-02-28T06:07:07Z) - A Dataset and Benchmark for Copyright Infringement Unlearning from Text-to-Image Diffusion Models [52.49582606341111]
Copyright law confers creators the exclusive rights to reproduce, distribute, and monetize their creative works.
Recent progress in text-to-image generation has introduced formidable challenges to copyright enforcement.
We introduce a novel pipeline that harmonizes CLIP, ChatGPT, and diffusion models to curate a dataset.
arXiv Detail & Related papers (2024-01-04T11:14:01Z) - Fair Text-to-Image Diffusion via Fair Mapping [32.02815667307623]
We propose a flexible, model-agnostic, and lightweight approach that modifies a pre-trained text-to-image diffusion model.
By effectively addressing the issue of implicit language bias, our method produces more fair and diverse image outputs.
arXiv Detail & Related papers (2023-11-29T15:02:01Z) - Robust Retraining-free GAN Fingerprinting via Personalized Normalization [21.63902009635896]
The proposed method can embed different fingerprints inside the GAN by just changing the input of the ParamGen Nets.
The performance of the proposed method in terms of robustness against both model-level and image-level attacks is superior to the state-of-the-art.
arXiv Detail & Related papers (2023-11-09T16:09:12Z) - Masked Images Are Counterfactual Samples for Robust Fine-tuning [77.82348472169335]
Fine-tuning deep learning models can lead to a trade-off between in-distribution (ID) performance and out-of-distribution (OOD) robustness.
We propose a novel fine-tuning method, which uses masked images as counterfactual samples that help improve the robustness of the fine-tuning model.
arXiv Detail & Related papers (2023-03-06T11:51:28Z) - Uncovering the Disentanglement Capability in Text-to-Image Diffusion
Models [60.63556257324894]
A key desired property of image generative models is the ability to disentangle different attributes.
We propose a simple, light-weight image editing algorithm where the mixing weights of the two text embeddings are optimized for style matching and content preservation.
Experiments show that the proposed method can modify a wide range of attributes, with the performance outperforming diffusion-model-based image-editing algorithms.
arXiv Detail & Related papers (2022-12-16T19:58:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.