Enhancing Fingerprint Image Synthesis with GANs, Diffusion Models, and Style Transfer Techniques
- URL: http://arxiv.org/abs/2403.13916v1
- Date: Wed, 20 Mar 2024 18:36:30 GMT
- Title: Enhancing Fingerprint Image Synthesis with GANs, Diffusion Models, and Style Transfer Techniques
- Authors: W. Tang, D. Figueroa, D. Liu, K. Johnsson, A. Sopasakis,
- Abstract summary: We generate live fingerprints from noise with a variety of methods, and we use image translation techniques to translate live fingerprint images to spoof.
We assess the diversity and realism of the generated live fingerprint images mainly through the Fr'echet Inception Distance (FID) and the False Acceptance Rate (FAR)
- Score: 0.44739156031315924
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present novel approaches involving generative adversarial networks and diffusion models in order to synthesize high quality, live and spoof fingerprint images while preserving features such as uniqueness and diversity. We generate live fingerprints from noise with a variety of methods, and we use image translation techniques to translate live fingerprint images to spoof. To generate different types of spoof images based on limited training data we incorporate style transfer techniques through a cycle autoencoder equipped with a Wasserstein metric along with Gradient Penalty (CycleWGAN-GP) in order to avoid mode collapse and instability. We find that when the spoof training data includes distinct spoof characteristics, it leads to improved live-to-spoof translation. We assess the diversity and realism of the generated live fingerprint images mainly through the Fr\'echet Inception Distance (FID) and the False Acceptance Rate (FAR). Our best diffusion model achieved a FID of 15.78. The comparable WGAN-GP model achieved slightly higher FID while performing better in the uniqueness assessment due to a slightly lower FAR when matched against the training data, indicating better creativity. Moreover, we give example images showing that a DDPM model clearly can generate realistic fingerprint images.
Related papers
- MFCLIP: Multi-modal Fine-grained CLIP for Generalizable Diffusion Face Forgery Detection [64.29452783056253]
The rapid development of photo-realistic face generation methods has raised significant concerns in society and academia.
Although existing approaches mainly capture face forgery patterns using image modality, other modalities like fine-grained noises and texts are not fully explored.
We propose a novel multi-modal fine-grained CLIP (MFCLIP) model, which mines comprehensive and fine-grained forgery traces across image-noise modalities.
arXiv Detail & Related papers (2024-09-15T13:08:59Z) - DiffFinger: Advancing Synthetic Fingerprint Generation through Denoising Diffusion Probabilistic Models [0.0]
This study explores the generation of synthesized fingerprint images using Denoising Diffusion Probabilistic Models (DDPMs)
Our results reveal that DiffFinger not only competes with authentic training set data in quality but also provides a richer set of biometric data, reflecting true-to-life variability.
arXiv Detail & Related papers (2024-03-15T14:34:29Z) - Coarse-to-Fine Latent Diffusion for Pose-Guided Person Image Synthesis [65.7968515029306]
We propose a novel Coarse-to-Fine Latent Diffusion (CFLD) method for Pose-Guided Person Image Synthesis (PGPIS)
A perception-refined decoder is designed to progressively refine a set of learnable queries and extract semantic understanding of person images as a coarse-grained prompt.
arXiv Detail & Related papers (2024-02-28T06:07:07Z) - FPGAN-Control: A Controllable Fingerprint Generator for Training with
Synthetic Data [7.203557048672379]
We present FPGAN-Control, an identity preserving image generation framework.
We introduce a novel appearance loss that encourages disentanglement between the fingerprint's identity and appearance properties.
We demonstrate the merits of FPGAN-Control, both quantitatively and qualitatively, in terms of identity level, degree of appearance control, and low synthetic-to-real domain gap.
arXiv Detail & Related papers (2023-10-29T14:30:01Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - WOUAF: Weight Modulation for User Attribution and Fingerprinting in Text-to-Image Diffusion Models [32.29120988096214]
This paper introduces a novel approach to model fingerprinting that assigns responsibility for the generated images.
Our method modifies generative models based on each user's unique digital fingerprint, imprinting a unique identifier onto the resultant content that can be traced back to the user.
arXiv Detail & Related papers (2023-06-07T19:44:14Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
Recent advancements in diffusion models have enabled the generation of realistic deepfakes from textual prompts in natural language.
We pioneer a systematic study on deepfake detection generated by state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-04-02T10:25:09Z) - Comparative analysis of segmentation and generative models for
fingerprint retrieval task [0.0]
Fingerprints deteriorate in quality if the fingers are dirty, wet, injured or when sensors malfunction.
This paper proposes a deep learning approach to address these issues using Generative (GAN) and models.
In our research, the u-net model performed better than the GAN networks.
arXiv Detail & Related papers (2022-09-13T17:21:14Z) - Semantic Image Synthesis via Diffusion Models [159.4285444680301]
Denoising Diffusion Probabilistic Models (DDPMs) have achieved remarkable success in various image generation tasks.
Recent work on semantic image synthesis mainly follows the emphde facto Generative Adversarial Nets (GANs)
arXiv Detail & Related papers (2022-06-30T18:31:51Z) - Self-supervised GAN Detector [10.963740942220168]
generative models can be abused with malicious purposes, such as fraud, defamation, and fake news.
We propose a novel framework to distinguish the unseen generated images outside of the training settings.
Our proposed method is composed of the artificial fingerprint generator reconstructing the high-quality artificial fingerprints of GAN images.
arXiv Detail & Related papers (2021-11-12T06:19:04Z) - Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data [64.65952078807086]
Photorealistic image generation has reached a new level of quality due to the breakthroughs of generative adversarial networks (GANs)
Yet, the dark side of such deepfakes, the malicious use of generated media, raises concerns about visual misinformation.
We seek a proactive and sustainable solution on deepfake detection by introducing artificial fingerprints into the models.
arXiv Detail & Related papers (2020-07-16T16:49:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.