論文の概要: SKG: A Versatile Information Retrieval and Analysis Framework for
Academic Papers with Semantic Knowledge Graphs
- arxiv url: http://arxiv.org/abs/2306.04758v1
- Date: Wed, 7 Jun 2023 20:16:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-09 17:43:57.253036
- Title: SKG: A Versatile Information Retrieval and Analysis Framework for
Academic Papers with Semantic Knowledge Graphs
- Title(参考訳): SKG:セマンティック知識グラフを用いた学術論文の多言語情報検索・分析フレームワーク
- Authors: Yamei Tu, Rui Qiu, Han-Wei Shen
- Abstract要約: 本稿では,抽象概念やメタ情報から意味概念を統合してコーパスを表現するセマンティック知識グラフを提案する。
SKGは、高い多様性と豊富な情報コンテンツが格納されているため、学術文献における様々なセマンティッククエリをサポートすることができる。
- 参考スコア(独自算出の注目度): 9.668240269886413
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The number of published research papers has experienced exponential growth in
recent years, which makes it crucial to develop new methods for efficient and
versatile information extraction and knowledge discovery. To address this need,
we propose a Semantic Knowledge Graph (SKG) that integrates semantic concepts
from abstracts and other meta-information to represent the corpus. The SKG can
support various semantic queries in academic literature thanks to the high
diversity and rich information content stored within. To extract knowledge from
unstructured text, we develop a Knowledge Extraction Module that includes a
semi-supervised pipeline for entity extraction and entity normalization. We
also create an ontology to integrate the concepts with other meta information,
enabling us to build the SKG. Furthermore, we design and develop a dataflow
system that demonstrates how to conduct various semantic queries flexibly and
interactively over the SKG. To demonstrate the effectiveness of our approach,
we conduct the research based on the visualization literature and provide
real-world use cases to show the usefulness of the SKG.
The dataset and codes for this work are available at
https://osf.io/aqv8p/?view_only=2c26b36e3e3941ce999df47e4616207f.
- Abstract(参考訳): 近年,研究論文の数が指数関数的に増加しており,効率的な情報抽出と知識発見のための新しい手法の開発が重要である。
このニーズに対処するために,抽象文やメタ情報から意味概念を統合してコーパスを表現するセマンティック知識グラフ(SKG)を提案する。
SKGは、高い多様性と豊富な情報コンテンツが格納されているため、学術文献における様々なセマンティッククエリをサポートすることができる。
非構造化テキストから知識を抽出するために,エンティティ抽出とエンティティ正規化のための半教師付きパイプラインを含む知識抽出モジュールを開発した。
また、概念を他のメタ情報と統合してskgを構築するためのオントロジーを作成しました。
さらに,様々な意味的問合せをskg上で柔軟かつインタラクティブに行う方法を示すデータフローシステムを設計し,開発する。
本手法の有効性を実証するために,可視化文献に基づく研究を行い,skgの有用性を示す実世界のユースケースを提供する。
この作業のデータセットとコードはhttps://osf.io/aqv8p/?
view_only=2c26b36e3e3941ce999df47e4616207f。
関連論文リスト
- Leveraging Large Language Models for Semantic Query Processing in a Scholarly Knowledge Graph [1.7418328181959968]
本研究は,革新的なセマンティッククエリ処理システムを開発することを目的としている。
オーストラリア国立大学のコンピュータサイエンス(CS)研究者による研究成果に関する総合的な情報を得ることができる。
論文 参考訳(メタデータ) (2024-05-24T09:19:45Z) - Knowledge Graphs Meet Multi-Modal Learning: A Comprehensive Survey [61.8716670402084]
本調査は,KG-driven Multi-Modal Learning(KG4MM)とMulti-Modal Knowledge Graph(MM4KG)の2つの主要な側面におけるKG認識研究に焦点を当てる。
KG対応マルチモーダル学習タスクと本質的MMKGタスクの2つの主要なタスクカテゴリについて検討した。
これらのタスクの多くに対して、定義、評価ベンチマークを提供し、関連する研究を行うための重要な洞察を概説する。
論文 参考訳(メタデータ) (2024-02-08T04:04:36Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
我々は、差別的かつ生成的なKGCフレームワークと互換性のあるプラグイン・アンド・プレイ方式であるContextualization Distillation戦略を導入する。
提案手法は,大規模言語モデルに対して,コンパクトで構造的な三重項を文脈に富んだセグメントに変換するように指示することから始まる。
多様なデータセットとKGC技術にわたる総合的な評価は、我々のアプローチの有効性と適応性を強調している。
論文 参考訳(メタデータ) (2024-01-28T08:56:49Z) - Knowledge Graphs and Pre-trained Language Models enhanced Representation Learning for Conversational Recommender Systems [58.561904356651276]
本稿では,対話型推薦システムのためのエンティティの意味理解を改善するために,知識強化型エンティティ表現学習(KERL)フレームワークを紹介する。
KERLは知識グラフと事前訓練された言語モデルを使用して、エンティティの意味的理解を改善する。
KERLはレコメンデーションとレスポンス生成の両方のタスクで最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-12-18T06:41:23Z) - Information Screening whilst Exploiting! Multimodal Relation Extraction
with Feature Denoising and Multimodal Topic Modeling [96.75821232222201]
既存のマルチモーダル関係抽出(MRE)研究は、内部情報過剰利用と外部情報過多という2つの共存課題に直面している。
内部情報スクリーニングと外部情報活用を同時に実現する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-19T14:56:57Z) - Semantic Similarity Measure of Natural Language Text through Machine
Learning and a Keyword-Aware Cross-Encoder-Ranking Summarizer -- A Case Study
Using UCGIS GIS&T Body of Knowledge [2.4909170697740968]
GIS&T Body of Knowledge (BoK)は、地理空間的トピックを定義し、開発し、文書化するためのコミュニティ主導の取り組みである。
本研究は,テキストから意味を抽出する上で,複数自然言語処理(NLP)技術の有効性を評価する。
また、科学出版物を分析するための機械学習技術の使用について、新たな視点を提供する。
論文 参考訳(メタデータ) (2023-05-17T01:17:57Z) - Multi-Document Scientific Summarization from a Knowledge Graph-Centric
View [9.579482432715261]
符号化処理と復号処理の両方において知識グラフを中心としたMDSSモデルであるKGSumを提案する。
具体的には、2つのグラフベースのモジュールが、知識グラフ情報を紙のエンコーディングに組み込むように提案されている。
復号処理では,まず要約の知識グラフ情報を記述文形式で生成し,次に最終要約を生成する2段復号器を提案する。
論文 参考訳(メタデータ) (2022-09-09T14:20:59Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
本稿では,知識グラフ拡張ネットワーク(KGAN)を提案する。
KGANは感情の特徴表現を、文脈、構文、知識に基づく複数の視点から捉えている。
3つの人気のあるABSAベンチマークの実験は、我々のKGANの有効性と堅牢性を示している。
論文 参考訳(メタデータ) (2022-01-13T08:25:53Z) - Relational Learning Analysis of Social Politics using Knowledge Graph
Embedding [11.978556412301975]
本稿では,新しい信頼性ドメインベースのKG埋め込みフレームワークを提案する。
ヘテロジニアスリソースから得られたデータの融合を、ドメインによって表現された正式なKG表現にキャプチャする。
このフレームワークは、データ品質と信頼性を保証するための信頼性モジュールも具体化している。
論文 参考訳(メタデータ) (2020-06-02T14:10:28Z) - ENT-DESC: Entity Description Generation by Exploring Knowledge Graph [53.03778194567752]
実際には、出力記述が最も重要な知識のみをカバーするため、入力知識は十分以上である可能性がある。
我々は、KG-to-textにおけるこのような実践的なシナリオの研究を容易にするために、大規模で挑戦的なデータセットを導入する。
本稿では,元のグラフ情報をより包括的に表現できるマルチグラフ構造を提案する。
論文 参考訳(メタデータ) (2020-04-30T14:16:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。