論文の概要: Leveraging Large Language Models for Semantic Query Processing in a Scholarly Knowledge Graph
- arxiv url: http://arxiv.org/abs/2405.15374v1
- Date: Fri, 24 May 2024 09:19:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 15:11:32.798636
- Title: Leveraging Large Language Models for Semantic Query Processing in a Scholarly Knowledge Graph
- Title(参考訳): 学術知識グラフにおける意味的クエリ処理のための大規模言語モデルの活用
- Authors: Runsong Jia, Bowen Zhang, Sergio J. Rodríguez Méndez, Pouya G. Omran,
- Abstract要約: 本研究は,革新的なセマンティッククエリ処理システムを開発することを目的としている。
オーストラリア国立大学のコンピュータサイエンス(CS)研究者による研究成果に関する総合的な情報を得ることができる。
- 参考スコア(独自算出の注目度): 1.7418328181959968
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The proposed research aims to develop an innovative semantic query processing system that enables users to obtain comprehensive information about research works produced by Computer Science (CS) researchers at the Australian National University (ANU). The system integrates Large Language Models (LLMs) with the ANU Scholarly Knowledge Graph (ASKG), a structured repository of all research-related artifacts produced at ANU in the CS field. Each artifact and its parts are represented as textual nodes stored in a Knowledge Graph (KG). To address the limitations of traditional scholarly KG construction and utilization methods, which often fail to capture fine-grained details, we propose a novel framework that integrates the Deep Document Model (DDM) for comprehensive document representation and the KG-enhanced Query Processing (KGQP) for optimized complex query handling. DDM enables a fine-grained representation of the hierarchical structure and semantic relationships within academic papers, while KGQP leverages the KG structure to improve query accuracy and efficiency with LLMs. By combining the ASKG with LLMs, our approach enhances knowledge utilization and natural language understanding capabilities. The proposed system employs an automatic LLM-SPARQL fusion to retrieve relevant facts and textual nodes from the ASKG. Initial experiments demonstrate that our framework is superior to baseline methods in terms of accuracy retrieval and query efficiency. We showcase the practical application of our framework in academic research scenarios, highlighting its potential to revolutionize scholarly knowledge management and discovery. This work empowers researchers to acquire and utilize knowledge from documents more effectively and provides a foundation for developing precise and reliable interactions with LLMs.
- Abstract(参考訳): 本研究は,オーストラリア国立大学(ANU)のコンピュータサイエンス(CS)研究者による研究成果の包括的情報を得ることのできる,革新的なセマンティッククエリ処理システムを開発することを目的とする。
このシステムは、大規模言語モデル(LLM)とANU Scholarly Knowledge Graph(ASKG)を統合する。
各アーティファクトとその部分は、知識グラフ(KG)に格納されたテキストノードとして表現される。
従来の学術的なKG構築・利用手法の限界に対処するため,包括的文書表現のためのDeep Document Model(DDM)と,複雑なクエリ処理を最適化するためのKG拡張クエリ処理(KGQP)を統合した新しいフレームワークを提案する。
DDMは学術論文における階層構造と意味的関係のきめ細かい表現を可能にし、KGQPはKG構造を活用してLLMによるクエリ精度と効率を向上させる。
ASKGとLLMを組み合わせることで,知識利用と自然言語理解能力の向上が図られる。
提案システムは,ASKGから関連する事実やテキストノードを検索するために,自動LLM-SPARQL融合を用いる。
最初の実験では,本フレームワークは精度検索やクエリ効率の点で,ベースライン手法よりも優れていることが示された。
我々は,学術研究のシナリオにおける我々の枠組みの実践的応用を紹介し,学術的な知識管理と発見に革命をもたらす可能性を強調した。
この研究により、研究者は文書からより効果的に知識を取得し、活用することができ、LLMとの正確で信頼性の高い相互作用を開発するための基盤を提供する。
関連論文リスト
- Fine-tuning and Prompt Engineering with Cognitive Knowledge Graphs for Scholarly Knowledge Organization [0.14999444543328289]
本研究は,大規模言語モデル(LLM)を用いた構造化学術知識の効果的伝達に焦点をあてる。
LLMは学術論文を分類し、その貢献を構造化され、同等の方法で記述する。
我々の方法論は、LLMの知識を活用し、CKGから得られた領域の専門家が検証した学術データと補完することである。
論文 参考訳(メタデータ) (2024-09-10T11:31:02Z) - WeKnow-RAG: An Adaptive Approach for Retrieval-Augmented Generation Integrating Web Search and Knowledge Graphs [10.380692079063467]
本稿では,Web検索と知識グラフを統合したWeKnow-RAGを提案する。
まず,知識グラフの構造化表現と高次ベクトル検索の柔軟性を組み合わせることで,LLM応答の精度と信頼性を向上させる。
提案手法は,情報検索の効率と精度を効果的にバランスさせ,全体の検索プロセスを改善する。
論文 参考訳(メタデータ) (2024-08-14T15:19:16Z) - Combining Knowledge Graphs and Large Language Models [4.991122366385628]
大規模言語モデル(LLM)は、言語理解と生成において驚くべき結果を示す。
幻覚やドメイン固有の知識の欠如など、いくつかの欠点がある。
これらの問題は知識グラフ(KG)を組み込むことで効果的に緩和することができる。
本研究は、KGを用いたLLM、LLMベースのKG、LLM-KGハイブリッドアプローチに関する28の論文の概要をまとめた。
論文 参考訳(メタデータ) (2024-07-09T05:42:53Z) - KG-RAG: Bridging the Gap Between Knowledge and Creativity [0.0]
大規模言語モデルエージェント(LMA)は、情報幻覚、破滅的な忘れ込み、長いコンテキストの処理における制限といった問題に直面している。
本稿では,LMAの知識能力を高めるため,KG-RAG (Knowledge Graph-Retrieval Augmented Generation)パイプラインを提案する。
ComplexWebQuestionsデータセットに関する予備実験では、幻覚的コンテンツの削減において顕著な改善が示されている。
論文 参考訳(メタデータ) (2024-05-20T14:03:05Z) - Knowledge Adaptation from Large Language Model to Recommendation for Practical Industrial Application [54.984348122105516]
大規模テキストコーパスで事前訓練されたLarge Language Models (LLMs) は、推奨システムを強化するための有望な道を示す。
オープンワールドの知識と協調的な知識を相乗化するLlm-driven knowlEdge Adaptive RecommeNdation (LEARN) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-07T04:00:30Z) - A Knowledge-Injected Curriculum Pretraining Framework for Question Answering [70.13026036388794]
本稿では,知識に基づく質問応答タスクの総合的なKG学習と活用を実現するための一般知識注入型カリキュラム事前学習フレームワーク(KICP)を提案する。
KIモジュールはまずKG中心の事前学習コーパスを生成してLMに知識を注入し、プロセスを3つの重要なステップに一般化する。
KAモジュールは、アダプタを備えたLMで生成されたコーパスから知識を学習し、元の自然言語理解能力を維持できる。
CRモジュールは人間の推論パターンに従って3つのコーパスを構築する。
論文 参考訳(メタデータ) (2024-03-11T03:42:03Z) - KG-Agent: An Efficient Autonomous Agent Framework for Complex Reasoning
over Knowledge Graph [134.8631016845467]
我々は、KG-Agentと呼ばれる自律LLMベースのエージェントフレームワークを提案する。
KG-Agentでは、LLM、多機能ツールボックス、KGベースのエグゼキュータ、知識メモリを統合する。
有効性を保証するため、プログラム言語を利用してKG上のマルチホップ推論プロセスを定式化する。
論文 参考訳(メタデータ) (2024-02-17T02:07:49Z) - Knowledge Graphs and Pre-trained Language Models enhanced Representation Learning for Conversational Recommender Systems [58.561904356651276]
本稿では,対話型推薦システムのためのエンティティの意味理解を改善するために,知識強化型エンティティ表現学習(KERL)フレームワークを紹介する。
KERLは知識グラフと事前訓練された言語モデルを使用して、エンティティの意味的理解を改善する。
KERLはレコメンデーションとレスポンス生成の両方のタスクで最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-12-18T06:41:23Z) - SKG: A Versatile Information Retrieval and Analysis Framework for
Academic Papers with Semantic Knowledge Graphs [9.668240269886413]
本稿では,抽象概念やメタ情報から意味概念を統合してコーパスを表現するセマンティック知識グラフを提案する。
SKGは、高い多様性と豊富な情報コンテンツが格納されているため、学術文献における様々なセマンティッククエリをサポートすることができる。
論文 参考訳(メタデータ) (2023-06-07T20:16:08Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteRにより、RMはLLM生成した知識コレクションを使用してクエリの知識を拡張することができる。
InteRは、最先端手法と比較して総合的に優れたゼロショット検索性能を実現する。
論文 参考訳(メタデータ) (2023-05-12T11:58:15Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
本稿では,知識グラフ拡張ネットワーク(KGAN)を提案する。
KGANは感情の特徴表現を、文脈、構文、知識に基づく複数の視点から捉えている。
3つの人気のあるABSAベンチマークの実験は、我々のKGANの有効性と堅牢性を示している。
論文 参考訳(メタデータ) (2022-01-13T08:25:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。