Embedding stochastic differential equations into neural networks via
dual processes
- URL: http://arxiv.org/abs/2306.04847v2
- Date: Thu, 17 Aug 2023 12:29:49 GMT
- Title: Embedding stochastic differential equations into neural networks via
dual processes
- Authors: Naoki Sugishita and Jun Ohkubo
- Abstract summary: We propose a new approach to constructing a neural network for predicting expectations of differential equations.
The proposed method does not need data sets of inputs and outputs.
As a demonstration, we construct neural networks for the Ornstein-Uhlenbeck process and the noisy van der Pol system.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new approach to constructing a neural network for predicting
expectations of stochastic differential equations. The proposed method does not
need data sets of inputs and outputs; instead, the information obtained from
the time-evolution equations, i.e., the corresponding dual process, is directly
compared with the weights in the neural network. As a demonstration, we
construct neural networks for the Ornstein-Uhlenbeck process and the noisy van
der Pol system. The remarkable feature of learned networks with the proposed
method is the accuracy of inputs near the origin. Hence, it would be possible
to avoid the overfitting problem because the learned network does not depend on
training data sets.
Related papers
- An Analytic Solution to Covariance Propagation in Neural Networks [10.013553984400488]
This paper presents a sample-free moment propagation technique to accurately characterize the input-output distributions of neural networks.
A key enabler of our technique is an analytic solution for the covariance of random variables passed through nonlinear activation functions.
The wide applicability and merits of the proposed technique are shown in experiments analyzing the input-output distributions of trained neural networks and training Bayesian neural networks.
arXiv Detail & Related papers (2024-03-24T14:08:24Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Spectral-Bias and Kernel-Task Alignment in Physically Informed Neural
Networks [4.604003661048267]
Physically informed neural networks (PINNs) are a promising emerging method for solving differential equations.
We propose a comprehensive theoretical framework that sheds light on this important problem.
We derive an integro-differential equation that governs PINN prediction in the large data-set limit.
arXiv Detail & Related papers (2023-07-12T18:00:02Z) - Simple initialization and parametrization of sinusoidal networks via
their kernel bandwidth [92.25666446274188]
sinusoidal neural networks with activations have been proposed as an alternative to networks with traditional activation functions.
We first propose a simplified version of such sinusoidal neural networks, which allows both for easier practical implementation and simpler theoretical analysis.
We then analyze the behavior of these networks from the neural tangent kernel perspective and demonstrate that their kernel approximates a low-pass filter with an adjustable bandwidth.
arXiv Detail & Related papers (2022-11-26T07:41:48Z) - Neural ODEs with Irregular and Noisy Data [8.349349605334316]
We discuss a methodology to learn differential equation(s) using noisy and irregular sampled measurements.
In our methodology, the main innovation can be seen in the integration of deep neural networks with the neural ordinary differential equations (ODEs) approach.
The proposed framework to learn a model describing the vector field is highly effective under noisy measurements.
arXiv Detail & Related papers (2022-05-19T11:24:41Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
Spiking neural networks (SNNs) are brain-inspired models that enable energy-efficient implementation on neuromorphic hardware.
Most existing methods imitate the backpropagation framework and feedforward architectures for artificial neural networks.
We propose a novel training method that does not rely on the exact reverse of the forward computation.
arXiv Detail & Related papers (2021-09-29T07:46:54Z) - Conditional physics informed neural networks [85.48030573849712]
We introduce conditional PINNs (physics informed neural networks) for estimating the solution of classes of eigenvalue problems.
We show that a single deep neural network can learn the solution of partial differential equations for an entire class of problems.
arXiv Detail & Related papers (2021-04-06T18:29:14Z) - Learning Neural Network Subspaces [74.44457651546728]
Recent observations have advanced our understanding of the neural network optimization landscape.
With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks.
With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks.
arXiv Detail & Related papers (2021-02-20T23:26:58Z) - Unsupervised Learning of Solutions to Differential Equations with
Generative Adversarial Networks [1.1470070927586016]
We develop a novel method for solving differential equations with unsupervised neural networks.
We show that our method, which we call Differential Equation GAN (DEQGAN), can obtain multiple orders of magnitude lower mean squared errors.
arXiv Detail & Related papers (2020-07-21T23:36:36Z) - Mean-Field and Kinetic Descriptions of Neural Differential Equations [0.0]
In this work we focus on a particular class of neural networks, i.e. the residual neural networks.
We analyze steady states and sensitivity with respect to the parameters of the network, namely the weights and the bias.
A modification of the microscopic dynamics, inspired by residual neural networks, leads to a Fokker-Planck formulation of the network.
arXiv Detail & Related papers (2020-01-07T13:41:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.