論文の概要: Faster Approximation Algorithms for Parameterized Graph Clustering and
Edge Labeling
- arxiv url: http://arxiv.org/abs/2306.04884v1
- Date: Thu, 8 Jun 2023 02:29:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-09 16:43:14.345429
- Title: Faster Approximation Algorithms for Parameterized Graph Clustering and
Edge Labeling
- Title(参考訳): パラメータ化グラフクラスタリングとエッジラベリングのための高速近似アルゴリズム
- Authors: Vedangi Bengali, Nate Veldt
- Abstract要約: グラフクラスタリングは、グラフの他の部分と疎結合なノードの集合を検出することを目的としている、ネットワーク分析における基本的なタスクである。
NPハードなパラメータ化クラスタリングフレームワークLambdaCCに対して,高速な近似アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 6.599344783327054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph clustering is a fundamental task in network analysis where the goal is
to detect sets of nodes that are well-connected to each other but sparsely
connected to the rest of the graph. We present faster approximation algorithms
for an NP-hard parameterized clustering framework called LambdaCC, which is
governed by a tunable resolution parameter and generalizes many other
clustering objectives such as modularity, sparsest cut, and cluster deletion.
Previous LambdaCC algorithms are either heuristics with no approximation
guarantees, or computationally expensive approximation algorithms. We provide
fast new approximation algorithms that can be made purely combinatorial. These
rely on a new parameterized edge labeling problem we introduce that generalizes
previous edge labeling problems that are based on the principle of strong
triadic closure and are of independent interest in social network analysis. Our
methods are orders of magnitude more scalable than previous approximation
algorithms and our lower bounds allow us to obtain a posteriori approximation
guarantees for previous heuristics that have no approximation guarantees of
their own.
- Abstract(参考訳): グラフクラスタリングは、グラフの他の部分と疎結合なノードの集合を検出することを目的としている、ネットワーク分析における基本的なタスクである。
本稿では,NPハードなパラメータ化クラスタリングフレームワークLambdaCCの高速化アルゴリズムを提案する。
従来のLambdaCCアルゴリズムは近似保証のないヒューリスティックか、計算に高価な近似アルゴリズムである。
我々は、純粋に組合せ可能な高速な新しい近似アルゴリズムを提供する。
これらは、三進的三進的閉包の原理に基づく従来のエッジラベル問題を一般化し、ソーシャルネットワーク分析に独立した関心を持つ新しいパラメータ化エッジラベル問題に依存する。
我々の手法は従来の近似アルゴリズムよりも桁違いに拡張性があり、下限は、それ自身で近似保証を持たない過去のヒューリスティックに対する後続近似保証を得ることを可能にする。
関連論文リスト
- Accelerating k-Means Clustering with Cover Trees [0.30693357740321775]
表木指数に基づく新しいk-meansアルゴリズムを提案し, オーバーヘッドが比較的低く, 性能も良好である。
木集約と境界に基づくフィルタリングの利点を組み合わせたハイブリッドアルゴリズムを得る。
論文 参考訳(メタデータ) (2024-10-19T14:02:42Z) - Combinatorial Approximations for Cluster Deletion: Simpler, Faster, and Better [18.121514220195607]
クラスタ削除は、計算およびソーシャルネットワーク分析におけるNPハードグラフクラスタリングの目的である。
まず,2つの近似アルゴリズムの厳密な解析を行い,その近似保証を4から3に改善する。
補助グラフにおいて最大等級を優しく取り、その周囲にクラスタを形成することにより、両アルゴリズムを驚くほど単純な方法でデランドマイズすることができることを示す。
論文 参考訳(メタデータ) (2024-04-24T18:39:18Z) - Differentially-Private Hierarchical Clustering with Provable
Approximation Guarantees [79.59010418610625]
階層クラスタリングのための微分プライベート近似アルゴリズムについて検討する。
例えば、$epsilon$-DPアルゴリズムは入力データセットに対して$O(|V|2/epsilon)$-additiveエラーを示さなければならない。
本稿では,ブロックを正確に復元する1+o(1)$近似アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-31T19:14:30Z) - Decision Diagram-Based Branch-and-Bound with Caching for Dominance and
Suboptimality Detection [9.175779296469194]
本稿では動的プログラミングモデルの構造を利用して探索を高速化する新しい要素を提案する。
鍵となる考え方は、検索中にキャッシュされた拡張しきい値に問い合わせることによって、同じ動的プログラミング状態に対応するノードの繰り返し拡張を防止することである。
このキャッシング機構によって引き起こされるプルーニングは、アルゴリズムによって拡張されたノード数を著しく削減できることを示す実験である。
論文 参考訳(メタデータ) (2022-11-22T10:18:33Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
近年、深層ネットワークにおける非最適化アルゴリズムの解析やデータ問題への関心が高まっており、非最適化のための理論的最適化アルゴリズムの最近の結果の概要を概説する。
論文 参考訳(メタデータ) (2020-12-11T08:28:51Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
複数の次元に沿った最先端技術を改善する新しいアルゴリズムを提案する。
非文脈線形帯域の特別な場合において、学習地平線に対して最小限の最適性を確立する。
論文 参考訳(メタデータ) (2020-10-23T09:12:47Z) - Differentially Private Clustering: Tight Approximation Ratios [57.89473217052714]
基本的なクラスタリング問題に対して,効率的な微分プライベートアルゴリズムを提案する。
この結果から,SampleとAggregateのプライバシーフレームワークのアルゴリズムの改善が示唆された。
1-Clusterアルゴリズムで使用されるツールの1つは、ClosestPairのより高速な量子アルゴリズムを適度な次元で得るために利用できる。
論文 参考訳(メタデータ) (2020-08-18T16:22:06Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
離散値のランダムフィールドにおけるMAP推論の最大化は、機械学習の基本的な問題である。
この問題の難しさから、特殊メッセージパッシングアルゴリズムの導出には線形プログラミング(LP)緩和が一般的である。
古典的加速勾配の根底にある手法を活用することにより,これらのアルゴリズムを高速化するランダム化手法を提案する。
論文 参考訳(メタデータ) (2020-07-01T18:43:32Z) - A Heuristic Based on Randomized Greedy Algorithms for the Clustered
Shortest-Path Tree Problem [2.099922236065961]
本稿では, RGA とショート・パス・ツリー・アルゴリズム (SPTA) の主な特徴を組み合わせたクラスタ・ショート・パス・ツリー問題 (CluSPT) を扱うアルゴリズムを提案する。
提案アルゴリズムの性能を評価するため,ユークリッドベンチマークが選択される。
論文 参考訳(メタデータ) (2020-05-05T08:34:58Z) - Second-Order Guarantees in Centralized, Federated and Decentralized
Nonconvex Optimization [64.26238893241322]
単純なアルゴリズムは、多くの文脈において優れた経験的結果をもたらすことが示されている。
いくつかの研究は、非最適化問題を研究するための厳密な分析的正当化を追求している。
これらの分析における重要な洞察は、摂動が局所的な降下アルゴリズムを許容する上で重要な役割を担っていることである。
論文 参考訳(メタデータ) (2020-03-31T16:54:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。