論文の概要: A Heuristic Based on Randomized Greedy Algorithms for the Clustered
Shortest-Path Tree Problem
- arxiv url: http://arxiv.org/abs/2005.04095v1
- Date: Tue, 5 May 2020 08:34:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-06 14:26:34.323489
- Title: A Heuristic Based on Randomized Greedy Algorithms for the Clustered
Shortest-Path Tree Problem
- Title(参考訳): クラスタ化短経路木問題に対するランダム化グリーディアルゴリズムに基づくヒューリスティックス
- Authors: Pham Dinh Thanh, Huynh Thi Thanh Binh, Do Dinh Dac, Nguyen Binh Long,
Le Minh Hai Phong
- Abstract要約: 本稿では, RGA とショート・パス・ツリー・アルゴリズム (SPTA) の主な特徴を組み合わせたクラスタ・ショート・パス・ツリー問題 (CluSPT) を扱うアルゴリズムを提案する。
提案アルゴリズムの性能を評価するため,ユークリッドベンチマークが選択される。
- 参考スコア(独自算出の注目度): 2.099922236065961
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Randomized Greedy Algorithms (RGAs) are interesting approaches to solve
problems whose structures are not well understood as well as problems in
combinatorial optimization which incorporate the random processes and the
greedy algorithms. This paper introduces a new algorithm that combines the
major features of RGAs and Shortest Path Tree Algorithm (SPTA) to deal with the
Clustered Shortest-Path Tree Problem (CluSPT). In our algorithm, SPTA is used
to determine the shortest path tree in each cluster while the combination
between characteristics of the RGAs and search strategy of SPTA is used to
constructed the edges connecting clusters. To evaluate the performance of the
proposed algorithm, Euclidean benchmarks are selected. The experimental
investigations show the strengths of the proposed algorithm in comparison with
some existing algorithms. We also analyze the influence of the parameters on
the performance of the algorithm.
- Abstract(参考訳): rgas (randomized greedy algorithms) は、ランダムプロセスと欲望アルゴリズムを組み込んだ組合せ最適化の問題だけでなく、構造がよく理解されていない問題を解くための興味深いアプローチである。
本稿では,rgas と shortest path tree algorithm (spta) の主な特徴を統合し,クラスタ化された shortest-path tree problem (cluspt) に対処する新しいアルゴリズムを提案する。
本アルゴリズムでは,各クラスタの最短経路木を決定するためにSPTAを用い,RGAの特性とSPTAの探索戦略を組み合わせてクラスタを接続するエッジを構築する。
提案アルゴリズムの性能を評価するために,ユークリッドベンチマークが選択される。
実験により,既存のアルゴリズムと比較して提案アルゴリズムの強みが示された。
また,パラメータがアルゴリズムの性能に与える影響についても検討した。
関連論文リスト
- The role of quantum and classical correlations in shrinking algorithms for optimization [0.0]
最適化問題(COP)における縮小アルゴリズムの性能について検討する。
量子近似最適化アルゴリズム (QAOA) と古典線形計画法 (LP) と半定値計画法 (SDP) の相関によるアルゴリズムの性能の比較を行った。
その結果、LPは低密度のインスタンスに対して他の全てのアプローチよりも優れており、SDPは高密度の問題に対して優れていた。
論文 参考訳(メタデータ) (2024-04-26T08:29:04Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - A Metaheuristic Algorithm for Large Maximum Weight Independent Set
Problems [58.348679046591265]
ノード重み付きグラフが与えられたとき、ノード重みが最大となる独立した(相互に非隣接な)ノードの集合を見つける。
このアプリケーションで放送されるグラフの中には、数十万のノードと数億のエッジを持つ大きなものもあります。
我々は,不規則なランダム化適応検索フレームワークにおいてメタヒューリスティックな新しい局所探索アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-03-28T21:34:16Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
バイレベル最適化は多くの重要な機械学習アプリケーションに広く適用されている。
両レベル最適化のための2つの新しいアルゴリズムを提案する。
両アルゴリズムが$mathcalO(epsilon-1.5)$の複雑さを達成し,既存のアルゴリズムを桁違いに上回っていることを示す。
論文 参考訳(メタデータ) (2021-06-08T21:05:30Z) - Fast Parallel Algorithms for Euclidean Minimum Spanning Tree and
Hierarchical Spatial Clustering [6.4805900740861]
HDBSCAN$*$のための私達のアルゴリズムの仕事そしてスペースを減らすために十分分離の新しい概念を導入します。
我々のアルゴリズムは理論的に効率的であることを示す: 彼らは逐次対応の作業(操作数)と多対数深さ(並列時間)を持っている。
48コアマシンを用いた大規模実世界および合成データセットの実験により、我々の最速のアルゴリズムは11.13-55.89x、既存の並列アルゴリズムを少なくとも桁違いに上回った。
論文 参考訳(メタデータ) (2021-04-02T16:05:00Z) - A bi-level encoding scheme for the clustered shortest-path tree problem
in multifactorial optimization [1.471992435706872]
CluSPT(Clustered Shortest-Path Tree Problem)は、実生活における様々な最適化問題において重要な役割を果たしている。
近年、CluSPTを扱うためにMFEA(Multifactorial Evolutionary Algorithm)が導入されている。
本稿では,MFEAに基づくCluSPTの解法について述べる。
論文 参考訳(メタデータ) (2021-02-12T13:36:07Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - Exploring search space trees using an adapted version of Monte Carlo
tree search for combinatorial optimization problems [0.6882042556551609]
このアプローチでは,問題インスタンスの探索空間木を探索するアルゴリズムを用いる。
このアルゴリズムはモンテカルロ木探索(Monte Carlo tree search)をベースとしている。
論文 参考訳(メタデータ) (2020-10-22T08:33:58Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
離散値のランダムフィールドにおけるMAP推論の最大化は、機械学習の基本的な問題である。
この問題の難しさから、特殊メッセージパッシングアルゴリズムの導出には線形プログラミング(LP)緩和が一般的である。
古典的加速勾配の根底にある手法を活用することにより,これらのアルゴリズムを高速化するランダム化手法を提案する。
論文 参考訳(メタデータ) (2020-07-01T18:43:32Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
我々は,数千の候補アルゴリズムの固定セットを考慮に入れた,極端なアルゴリズム選択(XAS)の設定を提案する。
我々は、XAS設定に対する最先端のAS技術の適用性を評価し、Dyadic特徴表現を利用したアプローチを提案する。
論文 参考訳(メタデータ) (2020-01-29T09:40:58Z) - Parameterized Complexity Analysis of Randomized Search Heuristics [16.759797540118665]
この章では、ランダム化アルゴリズムのパラメータ化実行時間解析の理論を適用した多数の結果をまとめた。
NP-hard最適化問題の解法を課題とするランダム化検索の集合に対する主な結果と証明手法について概説する。
論文 参考訳(メタデータ) (2020-01-15T03:43:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。