論文の概要: Shedding light on underrepresentation and Sampling Bias in machine
learning
- arxiv url: http://arxiv.org/abs/2306.05068v1
- Date: Thu, 8 Jun 2023 09:34:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-09 15:05:35.521238
- Title: Shedding light on underrepresentation and Sampling Bias in machine
learning
- Title(参考訳): 機械学習における不表現とサンプリングバイアスの遮蔽光
- Authors: Sami Zhioua, R\=uta Binkyt\.e
- Abstract要約: 差別を分散、偏見、ノイズに分解する方法を示す。
我々は、未表現グループのサンプルを多く集めることで、識別に対処できるという、広く受け入れられている緩和アプローチに挑戦する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurately measuring discrimination is crucial to faithfully assessing
fairness of trained machine learning (ML) models. Any bias in measuring
discrimination leads to either amplification or underestimation of the existing
disparity. Several sources of bias exist and it is assumed that bias resulting
from machine learning is born equally by different groups (e.g. females vs
males, whites vs blacks, etc.). If, however, bias is born differently by
different groups, it may exacerbate discrimination against specific
sub-populations. Sampling bias, is inconsistently used in the literature to
describe bias due to the sampling procedure. In this paper, we attempt to
disambiguate this term by introducing clearly defined variants of sampling
bias, namely, sample size bias (SSB) and underrepresentation bias (URB). We
show also how discrimination can be decomposed into variance, bias, and noise.
Finally, we challenge the commonly accepted mitigation approach that
discrimination can be addressed by collecting more samples of the
underrepresented group.
- Abstract(参考訳): 機械学習(ML)モデルの公正性を忠実に評価するためには、正確な識別測定が不可欠である。
差別を測定するバイアスは、既存の格差の増幅または過小評価に繋がる。
バイアスの源はいくつか存在し、機械学習から生じるバイアスは、異なるグループ(女性対男性、白人対黒人など)によって等しく生まれると仮定されている。
しかし、バイアスが異なるグループによって異なる場合、特定のサブ人口に対する差別を悪化させる可能性がある。
サンプリングバイアスは、サンプリング手順によるバイアスを記述するために文献で不整合に使用される。
本稿では,サンプルサイズバイアス (SSB) とアンダーレ表現バイアス (URB) という,明確に定義されたサンプリングバイアスの変種を導入することで,この用語を曖昧にしようとする。
また、差別を分散、偏見、ノイズに分解する方法を示す。
最後に,一般に受け入れられている緩和アプローチに挑戦し,過小評価されたグループのより多くのサンプルを収集することで,差別に対処することができる。
関連論文リスト
- AIM: Attributing, Interpreting, Mitigating Data Unfairness [40.351282126410545]
既存の公正機械学習(FairML)の研究は、モデル予測における差別バイアスの軽減に重点を置いている。
トレーニングデータからバイアスや偏見を反映したサンプルの発見という,新たな研究課題について検討する。
サンプルバイアスの測定と対策のための実用的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-13T05:21:10Z) - Dissecting Causal Biases [0.0]
本稿では,トレーニングデータの生成方法や収集方法に起因したバイアスのクラスに焦点を当てる。
バイアスの4つの源、すなわち、境界、選択、測定、相互作用が考慮されている。
論文 参考訳(メタデータ) (2023-10-20T09:12:10Z) - BLIND: Bias Removal With No Demographics [29.16221451643288]
我々は、データセットの人口統計学の事前知識のないバイアス除去手法であるBLINDを紹介する。
下流タスクでモデルをトレーニングしている間、BLINDは、メインモデルの成功を予測する補助モデルを使用してバイアス付きサンプルを検出し、トレーニングプロセス中にこれらのサンプルをダウンウェイトする。
感情分類と職業分類タスクにおける人種的および性別的偏見による実験は、BLINDがコストのかかる人口統計学的アノテーションプロセスに頼ることなく社会的偏見を緩和することを示した。
論文 参考訳(メタデータ) (2022-12-20T18:59:42Z) - The SAME score: Improved cosine based bias score for word embeddings [49.75878234192369]
埋め込みにおけるセマンティックバイアスのための新しいバイアススコアであるPetを紹介した。
本研究は,下水道作業における意味バイアスを測定し,社会的バイアスの潜在的な原因を特定することができることを示す。
論文 参考訳(メタデータ) (2022-03-28T09:28:13Z) - Gradient Based Activations for Accurate Bias-Free Learning [22.264226961225003]
このバイアス・精度のトレードオフを改善するために、偏微分器が実際に利用できることを示す。
具体的には、判別器の勾配を用いた特徴マスキング手法を用いる。
この単純なアプローチはバイアスを低減し、精度を大幅に向上させるのに有効であることを示す。
論文 参考訳(メタデータ) (2022-02-17T00:30:40Z) - Fair Group-Shared Representations with Normalizing Flows [68.29997072804537]
本研究では,異なるグループに属する個人を1つのグループにマッピングできる公正表現学習アルゴリズムを開発した。
提案手法は,他の公正表現学習アルゴリズムと競合することを示す。
論文 参考訳(メタデータ) (2022-01-17T10:49:49Z) - Fairness-aware Class Imbalanced Learning [57.45784950421179]
つぶやきの感情と職業分類のロングテール学習手法を評価する。
フェアネスを強制する手法により、マージンロスに基づくアプローチを拡張します。
論文 参考訳(メタデータ) (2021-09-21T22:16:30Z) - Balancing out Bias: Achieving Fairness Through Training Reweighting [58.201275105195485]
自然言語処理におけるバイアスは、性別や人種などの著者の特徴を学習するモデルから生じる。
既存のバイアスの緩和と測定方法は、著者の人口統計学と言語変数の相関を直接考慮していない。
本稿では,インスタンス再重み付けを用いたバイアス対策法を提案する。
論文 参考訳(メタデータ) (2021-09-16T23:40:28Z) - LOGAN: Local Group Bias Detection by Clustering [86.38331353310114]
コーパスレベルでバイアスを評価することは、モデルにバイアスがどのように埋め込まれているかを理解するのに十分ではない、と我々は主張する。
クラスタリングに基づく新しいバイアス検出手法であるLOGANを提案する。
毒性分類および対象分類タスクの実験は、LOGANが局所領域のバイアスを特定することを示している。
論文 参考訳(メタデータ) (2020-10-06T16:42:51Z) - Mitigating Gender Bias Amplification in Distribution by Posterior
Regularization [75.3529537096899]
本稿では,男女差の増幅問題について,分布の観点から検討する。
後続正則化に基づくバイアス緩和手法を提案する。
私たちの研究はバイアス増幅の理解に光を当てている。
論文 参考訳(メタデータ) (2020-05-13T11:07:10Z) - A survey of bias in Machine Learning through the prism of Statistical
Parity for the Adult Data Set [5.277804553312449]
偏見を自動決定にどのように導入できるかを理解することの重要性を示す。
まず、公正学習問題、特に二項分類設定における数学的枠組みについて述べる。
そこで,本研究では,現実およびよく知られた成人所得データセットの標準差分効果指標を用いて,偏見の有無を定量化することを提案する。
論文 参考訳(メタデータ) (2020-03-31T14:48:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。