論文の概要: Capturing (Optimal) Relaxed Plans with Stable and Supported Models of
Logic Programs
- arxiv url: http://arxiv.org/abs/2306.05069v1
- Date: Thu, 8 Jun 2023 09:34:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-09 15:05:51.986021
- Title: Capturing (Optimal) Relaxed Plans with Stable and Supported Models of
Logic Programs
- Title(参考訳): 安定かつ支援された論理プログラムモデルによる(最適)緩和計画のキャプチャ
- Authors: Masood Feyzbakhsh Rankooh and Tomi Janhunen
- Abstract要約: 計画問題を考えると、この問題の緩和計画を作成するために命令された全てのアクションのサブセットは、論理プログラムの安定なモデルでキャプチャできることを示す。
そこで我々は,緩和計画問題の1つの因果的および1つの診断的エンコーディングを論理プログラムとして導入し,両者が支持するモデルを用いて緩和計画のキャプチャを行う。
- 参考スコア(独自算出の注目度): 4.020523898765405
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We establish a novel relation between delete-free planning, an important task
for the AI Planning community also known as relaxed planning, and logic
programming. We show that given a planning problem, all subsets of actions that
could be ordered to produce relaxed plans for the problem can be bijectively
captured with stable models of a logic program describing the corresponding
relaxed planning problem. We also consider the supported model semantics of
logic programs, and introduce one causal and one diagnostic encoding of the
relaxed planning problem as logic programs, both capturing relaxed plans with
their supported models. Our experimental results show that these new encodings
can provide major performance gain when computing optimal relaxed plans, with
our diagnostic encoding outperforming state-of-the-art approaches to relaxed
planning regardless of the given time limit when measured on a wide collection
of STRIPS planning benchmarks.
- Abstract(参考訳): 我々は、削除不要計画と、緩和計画として知られるAIプランニングコミュニティにとって重要なタスク、論理プログラミングの新たな関係を確立する。
計画問題を考えると、緩和計画を作成するために命令された全ての行動のサブセットは、対応する緩和計画問題を記述する論理プログラムの安定なモデルで客観的に捕捉できることを示す。
また,論理プログラムのモデルセマンティクスがサポートされていることを考慮し,緩和計画問題の1つの因果と1つの診断エンコーディングを論理プログラムとして導入する。
実験の結果,これらの新たなエンコーディングは,最適化された緩和計画の計算において大きなパフォーマンス向上をもたらすことが示され,その診断法は,広範囲のSTRIPS計画ベンチマークで測定した場合の所定時間制限によらず,緩和計画に対する最先端の手法よりも優れていた。
関連論文リスト
- Unlocking Reasoning Potential in Large Langauge Models by Scaling Code-form Planning [94.76546523689113]
CodePlanは、テキストコード形式の計画を生成し、追跡するフレームワークで、高いレベルの構造化された推論プロセスの概要を擬似コードで示します。
CodePlanは、洗練された推論タスク固有のリッチなセマンティクスと制御フローを効果的にキャプチャする。
反応を直接生成するのに比べて25.1%の相対的な改善が達成されている。
論文 参考訳(メタデータ) (2024-09-19T04:13:58Z) - Exploring and Benchmarking the Planning Capabilities of Large Language Models [57.23454975238014]
この研究は、大規模言語モデル(LLM)の計画能力を改善するための基礎を築いた。
我々は、古典的な計画ベンチマークと自然言語シナリオの両方を含む包括的なベンチマークスイートを構築した。
本研究は,LLM計画の強化を目的としたマルチショットインコンテキスト学習について検討し,文脈長の増大と計画性能の向上の関係について検討する。
論文 参考訳(メタデータ) (2024-06-18T22:57:06Z) - Temporal Planning via Interval Logic Satisfiability for Autonomous Systems [0.0]
我々は、時間的計画の定式化について考察する: 間隔は作用と流動性原子の両方に関連付けられ、それらの関係はアレンのインターバル論理(英語版)の文として与えられる。
本稿では,制約プログラミング(CP)モデルとして,行動と流動性の間の複雑な関係を考慮に入れた計画グラフの概念を提案する。
提案手法は既存のPDDL 2.1プランナよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-06-14T02:21:53Z) - Planning as In-Painting: A Diffusion-Based Embodied Task Planning
Framework for Environments under Uncertainty [56.30846158280031]
具体的AIのためのタスクプランニングは、最も難しい問題の1つだ。
In-paintingとしての計画」というタスク非依存の手法を提案する。
提案するフレームワークは,様々な具体的AIタスクにおいて,有望なパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-12-02T10:07:17Z) - Lifted Sequential Planning with Lazy Constraint Generation Solvers [28.405198103927955]
本稿では,Lzy Clause Generation(LCG)に基づく制約プログラミング(CP)へのアプローチを用いて,オープンな可能性について検討する。
本稿では,いわゆるリフト型因果エンコーディングに基づく新しいCPモデルを提案する。
提案手法は,計画手順の少ない計画インスタンスに対して,最適な逐次計画における最先端の手法と非常によく比較可能であることを報告する。
論文 参考訳(メタデータ) (2023-07-17T04:54:58Z) - AdaPlanner: Adaptive Planning from Feedback with Language Models [56.367020818139665]
大規模言語モデル(LLM)は、最近、シーケンシャルな意思決定タスクの自律的エージェントとして機能する可能性を実証している。
本研究では,LLMエージェントが環境フィードバックに応じて自己生成計画を適応的に改善することのできるクローズドループアプローチであるAdaPlannerを提案する。
幻覚を緩和するために,様々なタスク,環境,エージェント機能にまたがる計画生成を容易にするコードスタイルのLCMプロンプト構造を開発した。
論文 参考訳(メタデータ) (2023-05-26T05:52:27Z) - A Framework for Neurosymbolic Robot Action Planning using Large Language Models [3.0501524254444767]
本稿では,象徴的タスク計画と機械学習アプローチのギャップを埋めることを目的としたフレームワークを提案する。
大規模言語モデル(LLM)を計画ドメイン定義言語(PDDL)と互換性のあるニューロシンボリックタスクプランナーに訓練する根拠
選択されたドメインにおける予備的な結果から, (i) テストデータセットの95.5%の問題を1,000個のサンプルで解決し, (ii) 従来のシンボルプランナーよりも最大13.5%短いプランを作成し, (iii) 計画の可利用性の平均待ち時間を61.4%まで削減する。
論文 参考訳(メタデータ) (2023-03-01T11:54:22Z) - Gradient-Based Mixed Planning with Discrete and Continuous Actions [34.885999774739055]
本稿では,連続パラメータと候補計画の動作を同時に最適化する二次的枠組みを提案する。
フレームワークはモジュールと組み合わせて、緩和に基づいて初期状態から目標へ移行する最適な計画候補を推定する。
論文 参考訳(メタデータ) (2021-10-19T14:21:19Z) - Divide-and-Conquer Monte Carlo Tree Search For Goal-Directed Planning [78.65083326918351]
暗黙的な逐次計画の仮定に代わるものを検討する。
本稿では,最適計画の近似を行うため,Divide-and-Conquer Monte Carlo Tree Search (DC-MCTS)を提案する。
計画順序に対するこのアルゴリズム的柔軟性は,グリッドワールドにおけるナビゲーションタスクの改善に繋がることを示す。
論文 参考訳(メタデータ) (2020-04-23T18:08:58Z) - STRIPS Action Discovery [67.73368413278631]
近年のアプローチでは、すべての中間状態が欠如している場合でも、アクションモデルを合成する古典的な計画が成功している。
アクションシグネチャが不明な場合に,従来のプランナーを用いてSTRIPSアクションモデルを教師なしで合成するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-01-30T17:08:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。