論文の概要: Unlocking Reasoning Potential in Large Langauge Models by Scaling Code-form Planning
- arxiv url: http://arxiv.org/abs/2409.12452v2
- Date: Fri, 4 Oct 2024 04:49:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 14:52:37.411130
- Title: Unlocking Reasoning Potential in Large Langauge Models by Scaling Code-form Planning
- Title(参考訳): コード・フォーム・プランニングのスケーリングによるLangaugeモデルにおけるアンロック推論の可能性
- Authors: Jiaxin Wen, Jian Guan, Hongning Wang, Wei Wu, Minlie Huang,
- Abstract要約: CodePlanは、テキストコード形式の計画を生成し、追跡するフレームワークで、高いレベルの構造化された推論プロセスの概要を擬似コードで示します。
CodePlanは、洗練された推論タスク固有のリッチなセマンティクスと制御フローを効果的にキャプチャする。
反応を直接生成するのに比べて25.1%の相対的な改善が達成されている。
- 参考スコア(独自算出の注目度): 94.76546523689113
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the remarkable success of large language models (LLMs) on traditional natural language processing tasks, their planning ability remains a critical bottleneck in tackling complex multi-step reasoning tasks. Existing approaches mainly rely on prompting or task-specific fine-tuning, often suffering from poor robustness and cross-task generalization. To address the limitation, we introduce CodePlan, a scalable framework that empowers LLMs to generate and follow \textit{code-form plans} -- pseudocode that outlines high-level, structured reasoning processes. By leveraging the structured and versatile nature of code, CodePlan effectively captures the rich semantics and control flows inherent to sophisticated reasoning tasks. Importantly, CodePlan allows automatic extraction of code-form plans from massive, wide-ranging text corpora without the need for curated, task-specific datasets. This enables it to scale up efficiently and improve LLM's reasoning capabilities across diverse scenarios. To train CodePlan, we construct a large-scale dataset of 2M examples that integrate code-form plans with standard prompt-response pairs from existing corpora. With minimal computation overhead during both training and inference, CodePlan achieves a 25.1\% relative improvement compared with directly generating responses, averaged across 13 challenging multi-step reasoning benchmarks, spanning mathematical reasoning, symbolic reasoning, instruction-following, multi-hop QA, and decision-making tasks. Further analysis reveals CodePlan's increasing performance gains on more complex reasoning tasks, as well as significant data efficiency thanks to its generalization ability.
- Abstract(参考訳): 従来の自然言語処理タスクにおける大規模言語モデル(LLM)の顕著な成功にもかかわらず、その計画能力は複雑な多段階推論タスクに取り組む上で重要なボトルネックとなっている。
既存のアプローチは主にプロンプトやタスク固有の微調整に依存しており、しばしばロバスト性やクロスタスクの一般化に悩まされている。
この制限に対処するため、私たちはスケーラブルなフレームワークであるCodePlanを紹介します。
CodePlanは構造化され、汎用的なコードの性質を活用することで、洗練された推論タスクに固有のリッチなセマンティクスと制御フローを効果的にキャプチャする。
重要な点として、CodePlanは、大規模で広範囲なテキストコーパスから、修正されたタスク固有のデータセットを必要とせずに、コード形式のプランを自動的に抽出することを可能にする。
これにより、効率よくスケールアップでき、様々なシナリオでLCMの推論能力を改善することができる。
CodePlanをトレーニングするために、コードフォームプランと既存のコーパスから標準のプロンプト-レスポンスペアを統合する2Mサンプルの大規模なデータセットを構築した。
トレーニングと推論の両方で計算オーバーヘッドが最小限に抑えられ、CodePlanは直接生成する応答と比較して25.1\%の改善を実現し、数学的推論、記号的推論、命令追従、マルチホップQA、意思決定タスクにまたがる13の挑戦的なマルチステップ推論ベンチマークで平均化されている。
さらなる分析により、より複雑な推論タスクにおけるCodePlanのパフォーマンス向上と、その一般化能力によるデータ効率の向上が明らかになった。
関連論文リスト
- Plan-over-Graph: Towards Parallelable LLM Agent Schedule [53.834646147919436]
大規模言語モデル(LLM)はタスク計画の推論において例外的な能力を示した。
本稿では,まず実生活のテキストタスクを実行可能なサブタスクに分解し,抽象的なタスクグラフを構築する,新しいパラダイムであるプランオーバーグラフを提案する。
モデルはこのタスクグラフを入力として理解し、並列実行計画を生成する。
論文 参考訳(メタデータ) (2025-02-20T13:47:51Z) - Zero-shot Robotic Manipulation with Language-guided Instruction and Formal Task Planning [16.89900521727246]
本稿では,言語誘導型シンボリックタスク計画(LM-SymOpt)フレームワークの最適化を提案する。
大規模言語モデルからの世界的知識と公式な推論を組み合わせた最初のエキスパートフリーな計画フレームワークです。
実験の結果,LM-SymOpt は既存の LLM ベースの計画手法よりも優れていた。
論文 参考訳(メタデータ) (2025-01-25T13:33:22Z) - Interactive and Expressive Code-Augmented Planning with Large Language Models [62.799579304821826]
大きな言語モデル(LLM)は、常識的推論と対話的な意思決定において強力な能力を示す。
近年,制御フローなどのコード・アジャセント技術を用いてLCM出力を構造化し,計画性能を向上させる技術が提案されている。
完全コード表現で動的なLEM計画手法であるREPL-Planを提案する。
論文 参考訳(メタデータ) (2024-11-21T04:23:17Z) - Non-myopic Generation of Language Models for Reasoning and Planning [45.75146679449453]
本稿では,モデル予測制御を利用した予測復号化手法を提案する。
我々の実験では、数学、コーディング、エージェントの幅広いタスクにおいて、大幅な改善が示されている。
論文 参考訳(メタデータ) (2024-10-22T17:13:38Z) - On The Planning Abilities of OpenAI's o1 Models: Feasibility, Optimality, and Generalizability [59.72892401927283]
さまざまなベンチマークタスクでOpenAIのo1モデルの計画能力を評価する。
その結果,o1-preview は GPT-4 よりもタスク制約に順応していることがわかった。
論文 参考訳(メタデータ) (2024-09-30T03:58:43Z) - Exploring and Benchmarking the Planning Capabilities of Large Language Models [57.23454975238014]
この研究は、大規模言語モデル(LLM)の計画能力を改善するための基礎を築いた。
我々は、古典的な計画ベンチマークと自然言語シナリオの両方を含む包括的なベンチマークスイートを構築した。
本研究は,LLM計画の強化を目的としたマルチショットインコンテキスト学習について検討し,文脈長の増大と計画性能の向上の関係について検討する。
論文 参考訳(メタデータ) (2024-06-18T22:57:06Z) - Unlocking Large Language Model's Planning Capabilities with Maximum Diversity Fine-tuning [10.704716790096498]
大規模言語モデル(LLM)は、技術やシステム設計の推進によって達成された、目覚ましいタスク解決能力を示している。
本稿では,LLMの計画能力に及ぼす微調整の影響について検討する。
計画領域におけるファインチューニングのサンプル効率を向上させるために,MDFT(Maximum Diversity Fine-Tuning)戦略を提案する。
論文 参考訳(メタデータ) (2024-06-15T03:06:14Z) - Consolidating Trees of Robotic Plans Generated Using Large Language
Models to Improve Reliability [6.4111574364474215]
LLM(Large Language Models)の固有の確率論的性質は、予測不可能な要素を導入している。
本稿では,多様な現実の要求やシナリオに対して,適切なロボットタスク計画を作成することを目的とした,革新的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-01-15T18:01:59Z) - Guiding Language Model Reasoning with Planning Tokens [122.43639723387516]
大規模言語モデル(LLM)は、最近、複雑な推論タスクを実行する能力に対して、かなりの関心を集めている。
より構造的なチェーン・オブ・シークレット・ステップの創出を促す階層的な生成手法を提案する。
提案手法では、トレーニング可能なパラメータ(0.001%)の無視可能な増加が必要であり、完全な微調整か、よりパラメータ効率の良いスキームで適用することができる。
論文 参考訳(メタデータ) (2023-10-09T13:29:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。