Communication-Efficient Gradient Descent-Accent Methods for Distributed Variational Inequalities: Unified Analysis and Local Updates
- URL: http://arxiv.org/abs/2306.05100v2
- Date: Mon, 3 Jun 2024 00:32:53 GMT
- Title: Communication-Efficient Gradient Descent-Accent Methods for Distributed Variational Inequalities: Unified Analysis and Local Updates
- Authors: Siqi Zhang, Sayantan Choudhury, Sebastian U Stich, Nicolas Loizou,
- Abstract summary: We provide a unified convergence analysis of communication-efficient local training methods for distributed variational inequality problems (VIPs)
Our approach is based on a general key assumption on the estimates that allows us to propose and analyze several novel local training algorithms.
We present the first local descent-accent algorithms with provable improved communication complexity for solving distributed variational inequalities on heterogeneous data.
- Score: 28.700663352789395
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distributed and federated learning algorithms and techniques associated primarily with minimization problems. However, with the increase of minimax optimization and variational inequality problems in machine learning, the necessity of designing efficient distributed/federated learning approaches for these problems is becoming more apparent. In this paper, we provide a unified convergence analysis of communication-efficient local training methods for distributed variational inequality problems (VIPs). Our approach is based on a general key assumption on the stochastic estimates that allows us to propose and analyze several novel local training algorithms under a single framework for solving a class of structured non-monotone VIPs. We present the first local gradient descent-accent algorithms with provable improved communication complexity for solving distributed variational inequalities on heterogeneous data. The general algorithmic framework recovers state-of-the-art algorithms and their sharp convergence guarantees when the setting is specialized to minimization or minimax optimization problems. Finally, we demonstrate the strong performance of the proposed algorithms compared to state-of-the-art methods when solving federated minimax optimization problems.
Related papers
- Quantized Hierarchical Federated Learning: A Robust Approach to
Statistical Heterogeneity [3.8798345704175534]
We present a novel hierarchical federated learning algorithm that incorporates quantization for communication-efficiency.
We offer a comprehensive analytical framework to evaluate its optimality gap and convergence rate.
Our findings reveal that our algorithm consistently achieves high learning accuracy over a range of parameters.
arXiv Detail & Related papers (2024-03-03T15:40:24Z) - Stability and Generalization of the Decentralized Stochastic Gradient
Descent Ascent Algorithm [80.94861441583275]
We investigate the complexity of the generalization bound of the decentralized gradient descent (D-SGDA) algorithm.
Our results analyze the impact of different top factors on the generalization of D-SGDA.
We also balance it with the generalization to obtain the optimal convex-concave setting.
arXiv Detail & Related papers (2023-10-31T11:27:01Z) - On the Convergence of Distributed Stochastic Bilevel Optimization
Algorithms over a Network [55.56019538079826]
Bilevel optimization has been applied to a wide variety of machine learning models.
Most existing algorithms restrict their single-machine setting so that they are incapable of handling distributed data.
We develop novel decentralized bilevel optimization algorithms based on a gradient tracking communication mechanism and two different gradients.
arXiv Detail & Related papers (2022-06-30T05:29:52Z) - Federated Learning with a Sampling Algorithm under Isoperimetry [9.990687944474738]
Federated learning uses a set of techniques to efficiently distribute the training of a machine learning algorithm across several devices.
We propose a communication-efficient variant of Langevinvin's sample a posteriori.
arXiv Detail & Related papers (2022-06-02T08:19:03Z) - Optimal Algorithms for Decentralized Stochastic Variational Inequalities [113.43047601775453]
This work concentrates on the decentralized setting, which is increasingly important but not well understood.
We present lower bounds for both communication and local iterations and construct optimal algorithms that match these lower bounds.
Our algorithms are the best among the available not only in the decentralized case, but also in the deterministic and non-distributed literature.
arXiv Detail & Related papers (2022-02-06T13:14:02Z) - On Accelerating Distributed Convex Optimizations [0.0]
This paper studies a distributed multi-agent convex optimization problem.
We show that the proposed algorithm converges linearly with an improved rate of convergence than the traditional and adaptive gradient-descent methods.
We demonstrate our algorithm's superior performance compared to prominent distributed algorithms for solving real logistic regression problems.
arXiv Detail & Related papers (2021-08-19T13:19:54Z) - Local AdaGrad-Type Algorithm for Stochastic Convex-Concave Minimax
Problems [80.46370778277186]
Large scale convex-concave minimax problems arise in numerous applications, including game theory, robust training, and training of generative adversarial networks.
We develop a communication-efficient distributed extragrad algorithm, LocalAdaSient, with an adaptive learning rate suitable for solving convex-concave minimax problem in the.
Server model.
We demonstrate its efficacy through several experiments in both the homogeneous and heterogeneous settings.
arXiv Detail & Related papers (2021-06-18T09:42:05Z) - Decentralized Personalized Federated Learning for Min-Max Problems [79.61785798152529]
This paper is the first to study PFL for saddle point problems encompassing a broader range of optimization problems.
We propose new algorithms to address this problem and provide a theoretical analysis of the smooth (strongly) convex-(strongly) concave saddle point problems.
Numerical experiments for bilinear problems and neural networks with adversarial noise demonstrate the effectiveness of the proposed methods.
arXiv Detail & Related papers (2021-06-14T10:36:25Z) - Decentralized Statistical Inference with Unrolled Graph Neural Networks [26.025935320024665]
We propose a learning-based framework, which unrolls decentralized optimization algorithms into graph neural networks (GNNs)
By minimizing the recovery error via end-to-end training, this learning-based framework resolves the model mismatch issue.
Our convergence analysis reveals that the learned model parameters may accelerate the convergence and reduce the recovery error to a large extent.
arXiv Detail & Related papers (2021-04-04T07:52:34Z) - Towards Optimal Problem Dependent Generalization Error Bounds in
Statistical Learning Theory [11.840747467007963]
We study problem-dependent rates that scale near-optimally with the variance, the effective loss errors, or the norms evaluated at the "best gradient hypothesis"
We introduce a principled framework dubbed "uniform localized convergence"
We show that our framework resolves several fundamental limitations of existing uniform convergence and localization analysis approaches.
arXiv Detail & Related papers (2020-11-12T04:07:29Z) - Second-Order Guarantees in Centralized, Federated and Decentralized
Nonconvex Optimization [64.26238893241322]
Simple algorithms have been shown to lead to good empirical results in many contexts.
Several works have pursued rigorous analytical justification for studying non optimization problems.
A key insight in these analyses is that perturbations play a critical role in allowing local descent algorithms.
arXiv Detail & Related papers (2020-03-31T16:54:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.