論文の概要: Mapping Brains with Language Models: A Survey
- arxiv url: http://arxiv.org/abs/2306.05126v1
- Date: Thu, 8 Jun 2023 11:50:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-09 14:33:42.865556
- Title: Mapping Brains with Language Models: A Survey
- Title(参考訳): 脳を言語モデルにマッピングする:調査
- Authors: Antonia Karamolegkou, Mostafa Abdou, Anders S{\o}gaard
- Abstract要約: 10のデータセットと8のメトリクスにまたがる30以上の研究を調査します。
蓄積された証拠は今のところあいまいだが、モデルのサイズと品質との相関は慎重な楽観主義の根拠となる。
- 参考スコア(独自算出の注目度): 4.675212251005814
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over the years, many researchers have seemingly made the same observation:
Brain and language model activations exhibit some structural similarities,
enabling linear partial mappings between features extracted from neural
recordings and computational language models. In an attempt to evaluate how
much evidence has been accumulated for this observation, we survey over 30
studies spanning 10 datasets and 8 metrics. How much evidence has been
accumulated, and what, if anything, is missing before we can draw conclusions?
Our analysis of the evaluation methods used in the literature reveals that some
of the metrics are less conservative. We also find that the accumulated
evidence, for now, remains ambiguous, but correlations with model size and
quality provide grounds for cautious optimism.
- Abstract(参考訳): 脳と言語モデルの活性化はいくつかの構造的類似性を示し、神経記録から抽出された特徴と計算言語モデルの間の線形部分マッピングを可能にする。
この観測のためにどれだけの証拠が蓄積されたかを評価するため、10のデータセットと8のメトリクスからなる30以上の研究を調査した。
どの程度の証拠が蓄積され、何であれ、結論を出す前に何が欠けているのか。
文献における評価手法の分析から,いくつかの指標は保守的でないことが判明した。
蓄積された証拠は今のところあいまいだが、モデルのサイズや品質との相関は慎重な楽観主義の根拠となる。
関連論文リスト
- A generative framework to bridge data-driven models and scientific theories in language neuroscience [84.76462599023802]
脳内の言語選択性の簡潔な説明を生成するためのフレームワークである生成的説明媒介バリデーションを提案する。
本研究では,説明精度が基礎となる統計モデルの予測力と安定性と密接に関連していることを示す。
論文 参考訳(メタデータ) (2024-10-01T15:57:48Z) - Causal Estimation of Memorisation Profiles [58.20086589761273]
言語モデルにおける記憶の理解は、実践的および社会的意味を持つ。
覚書化(英: Memorisation)とは、モデルがそのインスタンスを予測できる能力に対して、あるインスタンスでトレーニングを行うことによる因果的影響である。
本稿では,計量学の差分差分設計に基づく,新しい,原理的,効率的な記憶推定法を提案する。
論文 参考訳(メタデータ) (2024-06-06T17:59:09Z) - fMRI predictors based on language models of increasing complexity recover brain left lateralization [4.1618731507412505]
脳の相関の左右差は、パラメータ数によるスケーリング則に従っていることを示す。
この発見は、大きな言語モデルを用いた脳活動の計算的解析と、言語に対する左半球優位を示す失語患者からの古典的な観察を照合する。
論文 参考訳(メタデータ) (2024-05-28T09:24:52Z) - Computational Models to Study Language Processing in the Human Brain: A Survey [47.81066391664416]
本稿では,脳研究における計算モデルの利用の取り組みを概観し,新たな傾向を浮き彫りにしている。
我々の分析によると、すべてのデータセットで他のモデルよりも優れているモデルはない。
論文 参考訳(メタデータ) (2024-03-20T08:01:22Z) - ECRC: Emotion-Causality Recognition in Korean Conversation for GCN [0.0]
本稿では,新しいグラフ構造に基づく会話モデル(ECRC)の感情因果認識を提案する。
本研究では,単語レベルの埋め込みと文レベルの埋め込みの両方を活用することで,過去の埋め込みの限界を克服する。
このモデルは、双方向長短期メモリ(Bi-LSTM)とグラフニューラルネットワーク(GCN)モデルを韓国の会話分析のために一意に統合する。
論文 参考訳(メタデータ) (2024-03-16T02:07:31Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z) - Discrete representations in neural models of spoken language [56.29049879393466]
音声言語の弱教師付きモデルの文脈における4つの一般的なメトリクスの利点を比較した。
異なる評価指標が矛盾する結果をもたらすことが分かりました。
論文 参考訳(メタデータ) (2021-05-12T11:02:02Z) - Does injecting linguistic structure into language models lead to better
alignment with brain recordings? [13.880819301385854]
言語モデルと脳記録との整合性は,構文的あるいは意味論的フォーマリズムからのアノテーションに偏りがある場合と評価する。
提案手法は,脳内の意味の組成について,より標的となる仮説の評価を可能にする。
論文 参考訳(メタデータ) (2021-01-29T14:42:02Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
被験者の大規模なコホートを含むグループ研究は、脳機能組織に関する一般的な結論を引き出す上で重要である。
グループ研究のための新しい多視点独立成分分析モデルを提案し、各被験者のデータを共有独立音源と雑音の線形結合としてモデル化する。
まず、fMRIデータを用いて、被験者間の共通音源の同定における感度の向上を示す。
論文 参考訳(メタデータ) (2020-06-11T17:29:53Z) - Emergence of Separable Manifolds in Deep Language Representations [26.002842878797765]
ディープニューラルネットワーク(DNN)は、様々な認知的モダリティをまたいだ知覚的タスクの解決において、非常に経験的な成功を示している。
最近の研究では、タスク最適化DNNから抽出された表現と脳内の神経集団の間にかなりの類似性が報告されている。
DNNは後に、複雑な認知機能の基礎となる計算原理を推論する一般的なモデルクラスとなった。
論文 参考訳(メタデータ) (2020-06-01T17:23:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。