Mesogeos: A multi-purpose dataset for data-driven wildfire modeling in
the Mediterranean
- URL: http://arxiv.org/abs/2306.05144v2
- Date: Sat, 16 Dec 2023 03:07:56 GMT
- Title: Mesogeos: A multi-purpose dataset for data-driven wildfire modeling in
the Mediterranean
- Authors: Spyros Kondylatos, Ioannis Prapas, Gustau Camps-Valls, Ioannis
Papoutsis
- Abstract summary: Mesogeos is a large-scale dataset for wildfire modeling in the Mediterranean.
It integrates variables representing wildfire drivers (meteorology, vegetation, human activity) and historical records of wildfire ignitions and burned areas.
The datacube structure offers opportunities to assess machine learning (ML) usage in various wildfire modeling tasks.
- Score: 5.100085108873068
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Mesogeos, a large-scale multi-purpose dataset for wildfire
modeling in the Mediterranean. Mesogeos integrates variables representing
wildfire drivers (meteorology, vegetation, human activity) and historical
records of wildfire ignitions and burned areas for 17 years (2006-2022). It is
designed as a cloud-friendly spatio-temporal dataset, namely a datacube,
harmonizing all variables in a grid of 1km x 1km x 1-day resolution. The
datacube structure offers opportunities to assess machine learning (ML) usage
in various wildfire modeling tasks. We extract two ML-ready datasets that
establish distinct tracks to demonstrate this potential: (1) short-term
wildfire danger forecasting and (2) final burned area estimation given the
point of ignition. We define appropriate metrics and baselines to evaluate the
performance of models in each track. By publishing the datacube, along with the
code to create the ML datasets and models, we encourage the community to foster
the implementation of additional tracks for mitigating the increasing threat of
wildfires in the Mediterranean.
Related papers
- Explainable Global Wildfire Prediction Models using Graph Neural
Networks [2.2389592950633705]
We introduce an innovative Graph Neural Network (GNN)-based model for global wildfire prediction.
Our approach transforms global climate and wildfire data into a graph representation, addressing challenges such as null oceanic data locations.
arXiv Detail & Related papers (2024-02-11T10:44:41Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
We introduce three large-scale time series forecasting datasets from the cloud operations domain.
We show it is a strong zero-shot baseline and benefits from further scaling, both in model and dataset size.
Accompanying these datasets and results is a suite of comprehensive benchmark results comparing classical and deep learning baselines to our pre-trained method.
arXiv Detail & Related papers (2023-10-08T08:09:51Z) - A generative model for surrogates of spatial-temporal wildfire
nowcasting [13.551652250858144]
A generative model is proposed using a three-dimensional Vector-Quantized Variational Autoencoders.
The model is tested in the ecoregion of a recent massive wildfire event in California, known as the Chimney fire.
Numerical results show that the model succeed in generating coherent and structured fire scenarios.
arXiv Detail & Related papers (2023-08-05T06:54:18Z) - Kick Back & Relax: Learning to Reconstruct the World by Watching SlowTV [68.31957280416347]
Self-supervised monocular depth estimation (SS-MDE) has the potential to scale to vast quantities of data.
We propose a large-scale SlowTV dataset curated from YouTube, containing an order of magnitude more data than existing automotive datasets.
We train an SS-MDE model that provides zero-shot generalization to a large collection of indoor/outdoor datasets.
arXiv Detail & Related papers (2023-07-20T09:13:32Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - Argoverse 2: Next Generation Datasets for Self-Driving Perception and
Forecasting [64.7364925689825]
Argoverse 2 (AV2) is a collection of three datasets for perception and forecasting research in the self-driving domain.
The Lidar dataset contains 20,000 sequences of unlabeled lidar point clouds and map-aligned pose.
The Motion Forecasting dataset contains 250,000 scenarios mined for interesting and challenging interactions between the autonomous vehicle and other actors in each local scene.
arXiv Detail & Related papers (2023-01-02T00:36:22Z) - Next Day Wildfire Spread: A Machine Learning Data Set to Predict
Wildfire Spreading from Remote-Sensing Data [5.814925201882753]
Next Day Wildfire Spread' is a curated data set of historical wildfires aggregating nearly a decade of remote-sensing data across the United States.
We implement a convolutional autoencoder that takes advantage of the spatial information of this data to predict wildfire spread.
This data set can be used as a benchmark for developing wildfire propagation models based on remote sensing data for a lead time of one day.
arXiv Detail & Related papers (2021-12-04T23:28:44Z) - Sketch and Scale: Geo-distributed tSNE and UMAP [75.44887265789056]
Running machine learning analytics over geographically distributed datasets is a rapidly arising problem.
We introduce a novel framework: Sketch and Scale (SnS)
It leverages a Count Sketch data structure to compress the data on the edge nodes, aggregates the reduced size sketches on the master node, and runs vanilla tSNE or UMAP on the summary.
We show this technique to be fully parallel, scale linearly in time, logarithmically in memory, and communication, making it possible to analyze datasets with many millions, potentially billions of data points, spread across several data centers around the globe.
arXiv Detail & Related papers (2020-11-11T22:32:21Z) - Uncertainty Aware Wildfire Management [6.997483623023005]
Recent wildfires in the United States have resulted in loss of life and billions of dollars.
There are limited resources to be deployed over a massive area and the spread of the fire is challenging to predict.
This paper proposes a decision-theoretic approach to combat wildfires.
arXiv Detail & Related papers (2020-10-15T17:47:31Z) - Deep Learning Models for Predicting Wildfires from Historical
Remote-Sensing Data [11.071023080939794]
We create a data set by aggregating nearly a decade of remote-sensing data and historical fire records to predict wildfires.
Results are compared and analyzed for four different deep learning models to estimate wildfire likelihood.
arXiv Detail & Related papers (2020-10-15T00:27:22Z) - JHU-CROWD++: Large-Scale Crowd Counting Dataset and A Benchmark Method [92.15895515035795]
We introduce a new large scale unconstrained crowd counting dataset (JHU-CROWD++) that contains "4,372" images with "1.51 million" annotations.
We propose a novel crowd counting network that progressively generates crowd density maps via residual error estimation.
arXiv Detail & Related papers (2020-04-07T14:59:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.