Deep Learning Models for Predicting Wildfires from Historical
Remote-Sensing Data
- URL: http://arxiv.org/abs/2010.07445v3
- Date: Wed, 10 Feb 2021 14:52:42 GMT
- Title: Deep Learning Models for Predicting Wildfires from Historical
Remote-Sensing Data
- Authors: Fantine Huot, R. Lily Hu, Matthias Ihme, Qing Wang, John Burge,
Tianjian Lu, Jason Hickey, Yi-Fan Chen, John Anderson
- Abstract summary: We create a data set by aggregating nearly a decade of remote-sensing data and historical fire records to predict wildfires.
Results are compared and analyzed for four different deep learning models to estimate wildfire likelihood.
- Score: 11.071023080939794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying regions that have high likelihood for wildfires is a key
component of land and forestry management and disaster preparedness. We create
a data set by aggregating nearly a decade of remote-sensing data and historical
fire records to predict wildfires. This prediction problem is framed as three
machine learning tasks. Results are compared and analyzed for four different
deep learning models to estimate wildfire likelihood. The results demonstrate
that deep learning models can successfully identify areas of high fire
likelihood using aggregated data about vegetation, weather, and topography with
an AUC of 83%.
Related papers
- Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Image-Based Fire Detection in Industrial Environments with YOLOv4 [53.180678723280145]
This work looks into the potential of AI to detect and recognize fires and reduce detection time using object detection on an image stream.
To our end, we collected and labeled appropriate data from several public sources, which have been used to train and evaluate several models based on the popular YOLOv4 object detector.
arXiv Detail & Related papers (2022-12-09T11:32:36Z) - Multi-time Predictions of Wildfire Grid Map using Remote Sensing Local
Data [0.0]
This paper proposes a distributed learning framework that shares local data collected in ten locations in the western USA throughout local agents.
The proposed model has distinct features that address the characteristic need in prediction evaluations, including dynamic online estimation and time-series modeling.
arXiv Detail & Related papers (2022-09-15T22:34:06Z) - Next Day Wildfire Spread: A Machine Learning Data Set to Predict
Wildfire Spreading from Remote-Sensing Data [5.814925201882753]
Next Day Wildfire Spread' is a curated data set of historical wildfires aggregating nearly a decade of remote-sensing data across the United States.
We implement a convolutional autoencoder that takes advantage of the spatial information of this data to predict wildfire spread.
This data set can be used as a benchmark for developing wildfire propagation models based on remote sensing data for a lead time of one day.
arXiv Detail & Related papers (2021-12-04T23:28:44Z) - Learning Wildfire Model from Incomplete State Observations [0.0]
We create a dynamic model for future wildfire predictions of five locations within the western United States through a deep neural network.
The proposed model has distinct features that address the characteristic need in prediction evaluations, including dynamic online estimation and time-series modeling.
arXiv Detail & Related papers (2021-11-28T03:21:46Z) - From Static to Dynamic Prediction: Wildfire Risk Assessment Based on
Multiple Environmental Factors [69.9674326582747]
Wildfire is one of the biggest disasters that frequently occurs on the west coast of the United States.
We propose static and dynamic prediction models to analyze and assess the areas with high wildfire risks in California.
arXiv Detail & Related papers (2021-03-14T17:56:17Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Uncertainty Aware Wildfire Management [6.997483623023005]
Recent wildfires in the United States have resulted in loss of life and billions of dollars.
There are limited resources to be deployed over a massive area and the spread of the fire is challenging to predict.
This paper proposes a decision-theoretic approach to combat wildfires.
arXiv Detail & Related papers (2020-10-15T17:47:31Z) - Dataset Cartography: Mapping and Diagnosing Datasets with Training
Dynamics [118.75207687144817]
We introduce Data Maps, a model-based tool to characterize and diagnose datasets.
We leverage a largely ignored source of information: the behavior of the model on individual instances during training.
Our results indicate that a shift in focus from quantity to quality of data could lead to robust models and improved out-of-distribution generalization.
arXiv Detail & Related papers (2020-09-22T20:19:41Z) - Modeling Wildfire Perimeter Evolution using Deep Neural Networks [0.0]
We propose a wildfire spreadingmodel that predicts the evolution of the wildfire perimeter in 24 hour periods.
The model is able to learn wildfirespreading dynamics from real historic data sets from wildfires in the Western Sierra Nevada Mountains in Cal-ifornia.
arXiv Detail & Related papers (2020-09-08T20:06:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.