Unscented Autoencoder
- URL: http://arxiv.org/abs/2306.05256v1
- Date: Thu, 8 Jun 2023 14:53:02 GMT
- Title: Unscented Autoencoder
- Authors: Faris Janjo\v{s}, Lars Rosenbaum, Maxim Dolgov, J. Marius Z\"ollner
- Abstract summary: Variational Autoencoder (VAE) is a seminal approach in deep generative modeling with latent variables.
We apply the Unscented Transform (UT) -- a well-known distribution approximation used in the Unscented Kalman Filter (UKF) from the field of filtering.
We derive a novel, deterministic-sampling flavor of the VAE, the Unscented Autoencoder (UAE), trained purely with regularization-like terms on the per-sample posterior.
- Score: 3.0108936184913295
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Variational Autoencoder (VAE) is a seminal approach in deep generative
modeling with latent variables. Interpreting its reconstruction process as a
nonlinear transformation of samples from the latent posterior distribution, we
apply the Unscented Transform (UT) -- a well-known distribution approximation
used in the Unscented Kalman Filter (UKF) from the field of filtering. A finite
set of statistics called sigma points, sampled deterministically, provides a
more informative and lower-variance posterior representation than the
ubiquitous noise-scaling of the reparameterization trick, while ensuring
higher-quality reconstruction. We further boost the performance by replacing
the Kullback-Leibler (KL) divergence with the Wasserstein distribution metric
that allows for a sharper posterior. Inspired by the two components, we derive
a novel, deterministic-sampling flavor of the VAE, the Unscented Autoencoder
(UAE), trained purely with regularization-like terms on the per-sample
posterior. We empirically show competitive performance in Fr\'echet Inception
Distance (FID) scores over closely-related models, in addition to a lower
training variance than the VAE.
Related papers
- How to train your VAE [0.0]
Variational Autoencoders (VAEs) have become a cornerstone in generative modeling and representation learning within machine learning.
This paper explores interpreting the Kullback-Leibler (KL) Divergence, a critical component within the Evidence Lower Bound (ELBO)
The proposed method redefines the ELBO with a mixture of Gaussians for the posterior probability, introduces a regularization term, and employs a PatchGAN discriminator to enhance texture realism.
arXiv Detail & Related papers (2023-09-22T19:52:28Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Variational Laplace Autoencoders [53.08170674326728]
Variational autoencoders employ an amortized inference model to approximate the posterior of latent variables.
We present a novel approach that addresses the limited posterior expressiveness of fully-factorized Gaussian assumption.
We also present a general framework named Variational Laplace Autoencoders (VLAEs) for training deep generative models.
arXiv Detail & Related papers (2022-11-30T18:59:27Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - ReCAB-VAE: Gumbel-Softmax Variational Inference Based on Analytic
Divergence [17.665255113864795]
We present a novel divergence-like metric which corresponds to the upper bound of the Kullback-Leibler divergence (KLD) of a relaxed categorical distribution.
We also propose a relaxed categorical analytic bound variational autoencoder (ReCAB-VAE) that successfully models both continuous and relaxed latent representations.
arXiv Detail & Related papers (2022-05-09T08:11:46Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
Variational Autoencoder (VAE) approximates the posterior of latent variables based on amortized variational inference.
We propose an alternative model, DU-VAE, for learning a more Diverse and less Uncertain latent space.
arXiv Detail & Related papers (2021-10-24T07:58:13Z) - Autoencoding Variational Autoencoder [56.05008520271406]
We study the implications of this behaviour on the learned representations and also the consequences of fixing it by introducing a notion of self consistency.
We show that encoders trained with our self-consistency approach lead to representations that are robust (insensitive) to perturbations in the input introduced by adversarial attacks.
arXiv Detail & Related papers (2020-12-07T14:16:14Z) - Unbiased Gradient Estimation for Variational Auto-Encoders using Coupled
Markov Chains [34.77971292478243]
The variational auto-encoder (VAE) is a deep latent variable model that has two neural networks in an autoencoder-like architecture.
We develop a training scheme for VAEs by introducing unbiased estimators of the log-likelihood gradient.
We show experimentally that VAEs fitted with unbiased estimators exhibit better predictive performance.
arXiv Detail & Related papers (2020-10-05T08:11:55Z) - Relaxed-Responsibility Hierarchical Discrete VAEs [3.976291254896486]
We introduce textitRelaxed-Responsibility Vector-Quantisation, a novel way to parameterise discrete latent variables.
We achieve state-of-the-art bits-per-dim results for various standard datasets.
arXiv Detail & Related papers (2020-07-14T19:10:05Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.