Safe Collaborative Filtering
- URL: http://arxiv.org/abs/2306.05292v2
- Date: Wed, 28 Feb 2024 06:59:38 GMT
- Title: Safe Collaborative Filtering
- Authors: Riku Togashi, Tatsushi Oka, Naoto Ohsaka, Tetsuro Morimura
- Abstract summary: This study introduces a "safe" collaborative filtering method that prioritizes recommendation quality for less-satisfied users.
We develop a robust yet practical algorithm that extends the most scalable method, implicit alternating least squares (iALS)
Empirical evaluation on real-world datasets demonstrates the excellent tail performance of our approach.
- Score: 12.391773055695609
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Excellent tail performance is crucial for modern machine learning tasks, such
as algorithmic fairness, class imbalance, and risk-sensitive decision making,
as it ensures the effective handling of challenging samples within a dataset.
Tail performance is also a vital determinant of success for personalized
recommender systems to reduce the risk of losing users with low satisfaction.
This study introduces a "safe" collaborative filtering method that prioritizes
recommendation quality for less-satisfied users rather than focusing on the
average performance. Our approach minimizes the conditional value at risk
(CVaR), which represents the average risk over the tails of users' loss. To
overcome computational challenges for web-scale recommender systems, we develop
a robust yet practical algorithm that extends the most scalable method,
implicit alternating least squares (iALS). Empirical evaluation on real-world
datasets demonstrates the excellent tail performance of our approach while
maintaining competitive computational efficiency.
Related papers
- Efficient and Robust Regularized Federated Recommendation [52.24782464815489]
The recommender system (RSRS) addresses both user preference and privacy concerns.
We propose a novel method that incorporates non-uniform gradient descent to improve communication efficiency.
RFRecF's superior robustness compared to diverse baselines.
arXiv Detail & Related papers (2024-11-03T12:10:20Z) - Sample Complexity of Preference-Based Nonparametric Off-Policy
Evaluation with Deep Networks [58.469818546042696]
We study the sample efficiency of OPE with human preference and establish a statistical guarantee for it.
By appropriately selecting the size of a ReLU network, we show that one can leverage any low-dimensional manifold structure in the Markov decision process.
arXiv Detail & Related papers (2023-10-16T16:27:06Z) - Risk-sensitive Actor-free Policy via Convex Optimization [0.0]
Traditional reinforcement learning methods optimize agents safety, potentially resulting in unintended consequences.
We propose an optimal actor-sensitive policy based on a conditional-risk-free network.
arXiv Detail & Related papers (2023-06-30T21:20:04Z) - Efficient Exploration via Epistemic-Risk-Seeking Policy Optimization [8.867416300893577]
Exploration remains a key challenge in deep reinforcement learning (RL)
In this paper we propose a new, differentiable optimistic objective that when optimized yields a policy that provably explores efficiently.
Results show significant performance improvements even over other efficient exploration techniques.
arXiv Detail & Related papers (2023-02-18T14:13:25Z) - Stochastic Methods for AUC Optimization subject to AUC-based Fairness
Constraints [51.12047280149546]
A direct approach for obtaining a fair predictive model is to train the model through optimizing its prediction performance subject to fairness constraints.
We formulate the training problem of a fairness-aware machine learning model as an AUC optimization problem subject to a class of AUC-based fairness constraints.
We demonstrate the effectiveness of our approach on real-world data under different fairness metrics.
arXiv Detail & Related papers (2022-12-23T22:29:08Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - Risk Minimization from Adaptively Collected Data: Guarantees for
Supervised and Policy Learning [57.88785630755165]
Empirical risk minimization (ERM) is the workhorse of machine learning, but its model-agnostic guarantees can fail when we use adaptively collected data.
We study a generic importance sampling weighted ERM algorithm for using adaptively collected data to minimize the average of a loss function over a hypothesis class.
For policy learning, we provide rate-optimal regret guarantees that close an open gap in the existing literature whenever exploration decays to zero.
arXiv Detail & Related papers (2021-06-03T09:50:13Z) - Active Deep Learning on Entity Resolution by Risk Sampling [5.219701379581547]
Active Learning (AL) presents itself as a feasible solution that focuses on data deemed useful for model training.
We propose a novel AL approach of risk sampling for entity resolution (ER)
Based on the core-set characterization for AL, we theoretically derive an optimization model which aims to minimize core-set loss with non-uniform continuity.
We empirically verify the efficacy of the proposed approach on real data by a comparative study.
arXiv Detail & Related papers (2020-12-23T20:38:25Z) - Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems [81.7983463275447]
Learning-based control algorithms require data collection with abundant supervision for training.
We present a new approach for optimal motion planning with safe exploration that integrates chance-constrained optimal control with dynamics learning and feedback control.
arXiv Detail & Related papers (2020-05-09T05:57:43Z) - A Graduated Filter Method for Large Scale Robust Estimation [32.08441889054456]
We introduce a novel solver for robust estimation that possesses a strong ability to escape poor local minima.
Our algorithm is built upon the graduated-of-the-art methods to solve problems having many poor local minima.
arXiv Detail & Related papers (2020-03-20T02:51:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.