FollowNet: A Comprehensive Benchmark for Car-Following Behavior Modeling
- URL: http://arxiv.org/abs/2306.05381v1
- Date: Thu, 25 May 2023 08:59:26 GMT
- Title: FollowNet: A Comprehensive Benchmark for Car-Following Behavior Modeling
- Authors: Xianda Chen, Meixin Zhu, Kehua Chen, Pengqin Wang, Hongliang Lu, Hui
Zhong, Xu Han, Yinhai Wang
- Abstract summary: We establish a public benchmark dataset for car-following behavior modeling.
The benchmark consists of more than 80K car-following events extracted from five public driving datasets.
Results show that the deep deterministic policy gradient (DDPG) based model performs competitively with a lower MSE for spacing.
- Score: 20.784555362703294
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Car-following is a control process in which a following vehicle (FV) adjusts
its acceleration to keep a safe distance from the lead vehicle (LV). Recently,
there has been a booming of data-driven models that enable more accurate
modeling of car-following through real-world driving datasets. Although there
are several public datasets available, their formats are not always consistent,
making it challenging to determine the state-of-the-art models and how well a
new model performs compared to existing ones. In contrast, research fields such
as image recognition and object detection have benchmark datasets like
ImageNet, Microsoft COCO, and KITTI. To address this gap and promote the
development of microscopic traffic flow modeling, we establish a public
benchmark dataset for car-following behavior modeling. The benchmark consists
of more than 80K car-following events extracted from five public driving
datasets using the same criteria. These events cover diverse situations
including different road types, various weather conditions, and mixed traffic
flows with autonomous vehicles. Moreover, to give an overview of current
progress in car-following modeling, we implemented and tested representative
baseline models with the benchmark. Results show that the deep deterministic
policy gradient (DDPG) based model performs competitively with a lower MSE for
spacing compared to traditional intelligent driver model (IDM) and
Gazis-Herman-Rothery (GHR) models, and a smaller collision rate compared to
fully connected neural network (NN) and long short-term memory (LSTM) models in
most datasets. The established benchmark will provide researchers with
consistent data formats and metrics for cross-comparing different car-following
models, promoting the development of more accurate models. We open-source our
dataset and implementation code in
https://github.com/HKUST-DRIVE-AI-LAB/FollowNet.
Related papers
- MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
We propose an adaptable personalized car-following framework - MetaFollower.
We first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events.
We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability.
arXiv Detail & Related papers (2024-06-23T15:30:40Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
We propose an Automatic Data Engine (AIDE) that automatically identifies issues, efficiently curates data, improves the model through auto-labeling, and verifies the model through generation of diverse scenarios.
We further establish a benchmark for open-world detection on AV datasets to comprehensively evaluate various learning paradigms, demonstrating our method's superior performance at a reduced cost.
arXiv Detail & Related papers (2024-03-26T04:27:56Z) - G-MEMP: Gaze-Enhanced Multimodal Ego-Motion Prediction in Driving [71.9040410238973]
We focus on inferring the ego trajectory of a driver's vehicle using their gaze data.
Next, we develop G-MEMP, a novel multimodal ego-trajectory prediction network that combines GPS and video input with gaze data.
The results show that G-MEMP significantly outperforms state-of-the-art methods in both benchmarks.
arXiv Detail & Related papers (2023-12-13T23:06:30Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs.
We apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios.
Our model tops the Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%.
arXiv Detail & Related papers (2023-12-07T18:53:27Z) - An active inference model of car following: Advantages and applications [6.905724739762358]
Driver process models play a central role in the testing, verification, and development of automated and autonomous vehicle technologies.
Data-driven machine learning models are more capable than rule-based models but are limited by the need for large training datasets and their lack of interpretability.
We propose a novel car following modeling approach using active inference, which has comparable behavioral flexibility to data-driven models while maintaining interpretability.
arXiv Detail & Related papers (2023-03-27T13:39:26Z) - TransFollower: Long-Sequence Car-Following Trajectory Prediction through
Transformer [44.93030718234555]
We develop a long-sequence car-following trajectory prediction model based on the attention-based Transformer model.
We train and test our model with 112,597 real-world car-following events extracted from the Shanghai Naturalistic Driving Study (SH-NDS)
arXiv Detail & Related papers (2022-02-04T07:59:22Z) - Predicting Take-over Time for Autonomous Driving with Real-World Data:
Robust Data Augmentation, Models, and Evaluation [11.007092387379076]
We develop and train take-over time (TOT) models that operate on mid and high-level features produced by computer vision algorithms operating on different driver-facing camera views.
We show that a TOT model supported by augmented data can be used to produce continuous estimates of take-over times without delay.
arXiv Detail & Related papers (2021-07-27T16:39:50Z) - SODA10M: Towards Large-Scale Object Detection Benchmark for Autonomous
Driving [94.11868795445798]
We release a Large-Scale Object Detection benchmark for Autonomous driving, named as SODA10M, containing 10 million unlabeled images and 20K images labeled with 6 representative object categories.
To improve diversity, the images are collected every ten seconds per frame within 32 different cities under different weather conditions, periods and location scenes.
We provide extensive experiments and deep analyses of existing supervised state-of-the-art detection models, popular self-supervised and semi-supervised approaches, and some insights about how to develop future models.
arXiv Detail & Related papers (2021-06-21T13:55:57Z) - One Million Scenes for Autonomous Driving: ONCE Dataset [91.94189514073354]
We introduce the ONCE dataset for 3D object detection in the autonomous driving scenario.
The data is selected from 144 driving hours, which is 20x longer than the largest 3D autonomous driving dataset available.
We reproduce and evaluate a variety of self-supervised and semi-supervised methods on the ONCE dataset.
arXiv Detail & Related papers (2021-06-21T12:28:08Z) - An LSTM-Based Autonomous Driving Model Using Waymo Open Dataset [7.151393153761375]
This paper introduces an approach to learn a short-term memory (LSTM)-based model for imitating the behavior of a self-driving model.
The experimental results show that our model outperforms several models in driving action prediction.
arXiv Detail & Related papers (2020-02-14T05:28:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.