Artificial General Intelligence for Medical Imaging
- URL: http://arxiv.org/abs/2306.05480v2
- Date: Mon, 3 Jul 2023 01:52:58 GMT
- Title: Artificial General Intelligence for Medical Imaging
- Authors: Xiang Li, Lu Zhang, Zihao Wu, Zhengliang Liu, Lin Zhao, Yixuan Yuan,
Jun Liu, Gang Li, Dajiang Zhu, Pingkun Yan, Quanzheng Li, Wei Liu, Tianming
Liu, and Dinggang Shen
- Abstract summary: In this review, we explore the potential applications of Artificial General Intelligence (AGI) models in healthcare.
We emphasize the importance of integrating clinical expertise, domain knowledge, and multimodal capabilities into AGI models.
- Score: 62.116506368045606
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this review, we explore the potential applications of Artificial General
Intelligence (AGI) models in healthcare, focusing on foundational Large
Language Models (LLMs), Large Vision Models, and Large Multimodal Models. We
emphasize the importance of integrating clinical expertise, domain knowledge,
and multimodal capabilities into AGI models. In addition, we lay out key
roadmaps that guide the development and deployment of healthcare AGI models.
Throughout the review, we provide critical perspectives on the potential
challenges and pitfalls associated with deploying large-scale AGI models in the
medical field. This comprehensive review aims to offer insights into the future
implications of AGI in medical imaging, healthcare and beyond.
Related papers
- The Era of Foundation Models in Medical Imaging is Approaching : A Scoping Review of the Clinical Value of Large-Scale Generative AI Applications in Radiology [0.0]
Social problems stemming from the shortage of radiologists are intensifying, and artificial intelligence is being highlighted as a potential solution.
Recently emerging large-scale generative AI has expanded from large language models (LLMs) to multi-modal models.
This scoping review systematically organizes existing literature on the clinical value of large-scale generative AI applications.
arXiv Detail & Related papers (2024-09-03T00:48:50Z) - Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
Multimodal large language models (MLLMs) have recently transformed many domains, significantly affecting the medical field. Notably, Gemini-Vision-series (Gemini) and GPT-4-series (GPT-4) models have epitomized a paradigm shift in Artificial General Intelligence for computer vision.
This study evaluated the performance of the Gemini, GPT-4, and 4 popular large models for an exhaustive evaluation across 14 medical imaging datasets.
arXiv Detail & Related papers (2024-07-08T09:08:42Z) - OpenMEDLab: An Open-source Platform for Multi-modality Foundation Models
in Medicine [55.29668193415034]
We present OpenMEDLab, an open-source platform for multi-modality foundation models.
It encapsulates solutions of pioneering attempts in prompting and fine-tuning large language and vision models for frontline clinical and bioinformatic applications.
It opens access to a group of pre-trained foundation models for various medical image modalities, clinical text, protein engineering, etc.
arXiv Detail & Related papers (2024-02-28T03:51:02Z) - VISION-MAE: A Foundation Model for Medical Image Segmentation and
Classification [36.8105960525233]
We present a novel foundation model, VISION-MAE, specifically designed for medical imaging.
VISION-MAE is trained on a dataset of 2.5 million unlabeled images from various modalities.
It is then adapted to classification and segmentation tasks using explicit labels.
arXiv Detail & Related papers (2024-02-01T21:45:12Z) - Foundational Models in Medical Imaging: A Comprehensive Survey and
Future Vision [6.2847894163744105]
Foundation models are large-scale, pre-trained deep-learning models adapted to a wide range of downstream tasks.
These models facilitate contextual reasoning, generalization, and prompt capabilities at test time.
Capitalizing on the advances in computer vision, medical imaging has also marked a growing interest in these models.
arXiv Detail & Related papers (2023-10-28T12:08:12Z) - A Foundation LAnguage-Image model of the Retina (FLAIR): Encoding expert
knowledge in text supervision [17.583536041845402]
We present FLAIR, a pre-trained vision-language model for universal retinal fundus image understanding.
We compiled 37 open-access, mostly categorical fundus imaging datasets from various sources.
We integrate the expert's domain knowledge in the form of descriptive textual prompts, during both pre-training and zero-shot inference.
arXiv Detail & Related papers (2023-08-15T17:39:52Z) - Path to Medical AGI: Unify Domain-specific Medical LLMs with the Lowest
Cost [18.4295882376915]
Medical artificial general intelligence (AGI) aims to develop systems that can understand, learn, and apply knowledge across a wide range of tasks and domains.
Large language models (LLMs) represent a significant step towards AGI.
We propose Medical AGI (MedAGI), a paradigm to unify domain-specific medical LLMs with the lowest cost.
arXiv Detail & Related papers (2023-06-19T08:15:14Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language
Models [60.437091462613544]
We introduce XrayGPT, a novel conversational medical vision-language model.
It can analyze and answer open-ended questions about chest radiographs.
We generate 217k interactive and high-quality summaries from free-text radiology reports.
arXiv Detail & Related papers (2023-06-13T17:59:59Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
Medical artificial general intelligence (MAGI) enables one foundation model to solve different medical tasks.
We propose a new paradigm called Medical-knedge-enhanced mulTimOdal pretRaining (MOTOR)
arXiv Detail & Related papers (2023-04-26T01:26:19Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.