The Era of Foundation Models in Medical Imaging is Approaching : A Scoping Review of the Clinical Value of Large-Scale Generative AI Applications in Radiology
- URL: http://arxiv.org/abs/2409.12973v1
- Date: Tue, 3 Sep 2024 00:48:50 GMT
- Title: The Era of Foundation Models in Medical Imaging is Approaching : A Scoping Review of the Clinical Value of Large-Scale Generative AI Applications in Radiology
- Authors: Inwoo Seo, Eunkyoung Bae, Joo-Young Jeon, Young-Sang Yoon, Jiho Cha,
- Abstract summary: Social problems stemming from the shortage of radiologists are intensifying, and artificial intelligence is being highlighted as a potential solution.
Recently emerging large-scale generative AI has expanded from large language models (LLMs) to multi-modal models.
This scoping review systematically organizes existing literature on the clinical value of large-scale generative AI applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Social problems stemming from the shortage of radiologists are intensifying, and artificial intelligence is being highlighted as a potential solution. Recently emerging large-scale generative AI has expanded from large language models (LLMs) to multi-modal models, showing potential to revolutionize the entire process of medical imaging. However, comprehensive reviews on their development status and future challenges are currently lacking. This scoping review systematically organizes existing literature on the clinical value of large-scale generative AI applications by following PCC guidelines. A systematic search was conducted across four databases: PubMed, EMbase, IEEE-Xplore, and Google Scholar, and 15 studies meeting the inclusion/exclusion criteria set by the researchers were reviewed. Most of these studies focused on improving the efficiency of report generation in specific parts of the interpretation process or on translating reports to aid patient understanding, with the latest studies extending to AI applications performing direct interpretations. All studies were quantitatively evaluated by clinicians, with most utilizing LLMs and only three employing multi-modal models. Both LLMs and multi-modal models showed excellent results in specific areas, but none yet outperformed radiologists in diagnostic performance. Most studies utilized GPT, with few using models specialized for the medical imaging domain. This study provides insights into the current state and limitations of large-scale generative AI-based applications in the medical imaging field, offering foundational data and suggesting that the era of medical imaging foundation models is on the horizon, which may fundamentally transform clinical practice in the near future.
Related papers
- Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented generation (RAG) has emerged as a promising approach to enhance the performance of large language models (LLMs)
We introduce Medical Retrieval-Augmented Generation Benchmark (MedRGB) that provides various supplementary elements to four medical QA datasets.
Our experimental results reveals current models' limited ability to handle noise and misinformation in the retrieved documents.
arXiv Detail & Related papers (2024-11-14T06:19:18Z) - Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
Multimodal large language models (MLLMs) have recently transformed many domains, significantly affecting the medical field. Notably, Gemini-Vision-series (Gemini) and GPT-4-series (GPT-4) models have epitomized a paradigm shift in Artificial General Intelligence for computer vision.
This study evaluated the performance of the Gemini, GPT-4, and 4 popular large models for an exhaustive evaluation across 14 medical imaging datasets.
arXiv Detail & Related papers (2024-07-08T09:08:42Z) - MiniGPT-Med: Large Language Model as a General Interface for Radiology Diagnosis [28.421857904824627]
MiniGPT-Med is a vision-language model derived from large-scale language models and tailored for medical applications.
It is capable of performing tasks such as medical report generation, visual question answering (VQA), and disease identification within medical imagery.
It achieves state-of-the-art performance on medical report generation, higher than the previous best model by 19% accuracy.
arXiv Detail & Related papers (2024-07-04T18:21:10Z) - Generative AI for Synthetic Data Across Multiple Medical Modalities: A Systematic Review of Recent Developments and Challenges [2.1835659964186087]
This paper presents a systematic review of generative models used to synthesize various medical data types.
Our study encompasses a broad array of medical data modalities and explores various generative models.
arXiv Detail & Related papers (2024-06-27T14:00:11Z) - Advancing human-centric AI for robust X-ray analysis through holistic self-supervised learning [33.9544297423474]
We present RayDINO, a large visual encoder trained by self-supervision on 873k chest X-rays.
We compare RayDINO to previous state-of-the-art models across nine radiology tasks, from classification and dense segmentation to text generation.
Our findings suggest that self-supervision allows patient-centric AI proving useful in clinical and interpreting X-rays holistically.
arXiv Detail & Related papers (2024-05-02T16:59:10Z) - Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
We show how to automatically collect medical image-text aligned data for pretraining from public resources such as PubMed.
In particular, we present a pipeline that streamlines the pre-training process by initially collecting a large brain image-text dataset.
We also investigate the unique challenge of mapping subfigures to subcaptions in the medical domain.
arXiv Detail & Related papers (2024-04-27T05:03:42Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - Towards Generalist Biomedical AI [28.68106423175678]
We introduce Med-PaLM Multimodal (Med-PaLM M), our proof of concept for a generalist biomedical AI system.
Med-PaLM M is a large multimodal generative model that flexibly encodes and interprets biomedical data.
We conduct a radiologist evaluation of model-generated (and human) chest X-ray reports and observe encouraging performance across model scales.
arXiv Detail & Related papers (2023-07-26T17:52:22Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language
Models [60.437091462613544]
We introduce XrayGPT, a novel conversational medical vision-language model.
It can analyze and answer open-ended questions about chest radiographs.
We generate 217k interactive and high-quality summaries from free-text radiology reports.
arXiv Detail & Related papers (2023-06-13T17:59:59Z) - Artificial General Intelligence for Medical Imaging Analysis [92.3940918983821]
Large-scale Artificial General Intelligence (AGI) models have achieved unprecedented success in a variety of general domain tasks.
These models face notable challenges arising from the medical field's inherent complexities and unique characteristics.
This review aims to offer insights into the future implications of AGI in medical imaging, healthcare, and beyond.
arXiv Detail & Related papers (2023-06-08T18:04:13Z) - Artificial Intelligence-Based Methods for Fusion of Electronic Health
Records and Imaging Data [0.9749560288448113]
We focus on synthesizing and analyzing the literature that uses AI techniques to fuse multimodal medical data for different clinical applications.
We present a comprehensive analysis of the various fusion strategies, the diseases and clinical outcomes for which multimodal fusion was used, and the available multimodal medical datasets.
arXiv Detail & Related papers (2022-10-23T07:13:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.