論文の概要: Artificial General Intelligence for Medical Imaging Analysis
- arxiv url: http://arxiv.org/abs/2306.05480v4
- Date: Thu, 21 Nov 2024 22:08:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 15:01:29.981414
- Title: Artificial General Intelligence for Medical Imaging Analysis
- Title(参考訳): 医用画像解析のための汎用人工知能
- Authors: Xiang Li, Lin Zhao, Lu Zhang, Zihao Wu, Zhengliang Liu, Hanqi Jiang, Chao Cao, Shaochen Xu, Yiwei Li, Haixing Dai, Yixuan Yuan, Jun Liu, Gang Li, Dajiang Zhu, Pingkun Yan, Quanzheng Li, Wei Liu, Tianming Liu, Dinggang Shen,
- Abstract要約: 大規模人工知能(AGI)モデルは、様々な汎用ドメインタスクにおいて前例のない成功を収めた。
これらのモデルは、医学分野固有の複雑さとユニークな特徴から生じる顕著な課題に直面している。
このレビューは、医療画像、医療などにおけるAGIの将来的な意味についての洞察を提供することを目的としている。
- 参考スコア(独自算出の注目度): 92.3940918983821
- License:
- Abstract: Large-scale Artificial General Intelligence (AGI) models, including Large Language Models (LLMs) such as ChatGPT/GPT-4, have achieved unprecedented success in a variety of general domain tasks. Yet, when applied directly to specialized domains like medical imaging, which require in-depth expertise, these models face notable challenges arising from the medical field's inherent complexities and unique characteristics. In this review, we delve into the potential applications of AGI models in medical imaging and healthcare, with a primary focus on LLMs, Large Vision Models, and Large Multimodal Models. We provide a thorough overview of the key features and enabling techniques of LLMs and AGI, and further examine the roadmaps guiding the evolution and implementation of AGI models in the medical sector, summarizing their present applications, potentialities, and associated challenges. In addition, we highlight potential future research directions, offering a holistic view on upcoming ventures. This comprehensive review aims to offer insights into the future implications of AGI in medical imaging, healthcare, and beyond.
- Abstract(参考訳): ChatGPT/GPT-4のような大規模言語モデル(LLM)を含む大規模人工知能(AGI)モデルは、様々な汎用ドメインタスクにおいて前例のない成功を収めた。
しかし、詳細な専門知識を必要とする医療画像のような専門分野に直接適用すると、これらのモデルは、医療分野固有の複雑さとユニークな特徴から生じる顕著な課題に直面します。
本稿では,医療画像・医療におけるAGIモデルの可能性について検討し,LLM,Large Vision Models,Large Multimodal Modelsを中心に検討する。
本稿では, LLM と AGI の重要な特徴を概観するとともに, 医療分野における AGI モデルの進化と実装を導くロードマップを整理し, 現状の応用, 可能性, 関連する課題について概説する。
さらに、将来的な研究の方向性を強調し、今後のベンチャーの全体像を提供する。
この総合的なレビューは、医療画像、医療などにおけるAGIの将来的な意味についての洞察を提供することを目的としている。
関連論文リスト
- A Survey of Medical Vision-and-Language Applications and Their Techniques [48.268198631277315]
医療ビジョン・アンド・ランゲージモデル(MVLM)は、複雑な医療データを解釈するための自然言語インタフェースを提供する能力から、大きな関心を集めている。
本稿では,MVLMの概要と適用した各種医療課題について概観する。
また、これらのタスクに使用するデータセットについても検討し、標準化された評価指標に基づいて異なるモデルの性能を比較した。
論文 参考訳(メタデータ) (2024-11-19T03:27:05Z) - Generative Artificial Intelligence Meets Synthetic Aperture Radar: A Survey [49.29751866761522]
本稿では,GenAIとSARの交差点について検討する。
まず、SAR分野における一般的なデータ生成ベースのアプリケーションについて説明する。
次に、最新のGenAIモデルの概要を体系的にレビューする。
最後に、SARドメインの対応するアプリケーションも含まれる。
論文 参考訳(メタデータ) (2024-11-05T03:06:00Z) - The Era of Foundation Models in Medical Imaging is Approaching : A Scoping Review of the Clinical Value of Large-Scale Generative AI Applications in Radiology [0.0]
放射線技師の不足に起因する社会問題は激化しており、人工知能は潜在的な解決策として強調されている。
最近出現する大規模生成AIは、大規模言語モデル(LLM)からマルチモーダルモデルへと拡張されている。
このスコーピングレビューは、大規模生成型AIアプリケーションの臨床的価値に関する既存の文献を体系的に整理する。
論文 参考訳(メタデータ) (2024-09-03T00:48:50Z) - Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
特にGemini-Vision-Series (Gemini) と GPT-4-Series (GPT-4) は、コンピュータビジョンのための人工知能のパラダイムシフトを象徴している。
本研究は,14の医用画像データセットを対象に,Gemini,GPT-4,および4つの一般的な大規模モデルの性能評価を行った。
論文 参考訳(メタデータ) (2024-07-08T09:08:42Z) - OpenMEDLab: An Open-source Platform for Multi-modality Foundation Models
in Medicine [55.29668193415034]
マルチモダリティ基盤モデルのためのオープンソースプラットフォームであるOpenMEDLabについて紹介する。
これは、最前線臨床および生体情報学応用のための大規模言語とビジョンモデルを刺激し、微調整する先駆的な試みの解決策をカプセル化する。
様々な医用画像のモダリティ、臨床テキスト、タンパク質工学など、事前訓練された基礎モデル群へのアクセスが可能である。
論文 参考訳(メタデータ) (2024-02-28T03:51:02Z) - VISION-MAE: A Foundation Model for Medical Image Segmentation and
Classification [36.8105960525233]
医用画像に特化して設計された新しい基礎モデルVISION-MAEを提案する。
VISION-MAEは、様々なモダリティから250万枚の未ラベル画像のデータセットでトレーニングされている。
その後、明示的なラベルを使って分類とセグメンテーションのタスクに適応する。
論文 参考訳(メタデータ) (2024-02-01T21:45:12Z) - Foundational Models in Medical Imaging: A Comprehensive Survey and
Future Vision [6.2847894163744105]
ファンデーションモデルは、広範囲の下流タスクに適応した大規模で事前訓練されたディープラーニングモデルである。
これらのモデルは、コンテキスト推論、一般化、テスト時の迅速な機能を促進する。
コンピュータビジョンの進歩に乗じて、医療画像はこれらのモデルへの関心も高まっている。
論文 参考訳(メタデータ) (2023-10-28T12:08:12Z) - A Foundation LAnguage-Image model of the Retina (FLAIR): Encoding expert
knowledge in text supervision [17.583536041845402]
広義網膜基底画像理解のための学習済み視覚言語モデルFLAIRについて述べる。
各種ソースから37個のオープンアクセスデータセットを収集した。
我々は、事前学習とゼロショット推論の両方において、専門家のドメイン知識を記述的テキストプロンプトの形で統合する。
論文 参考訳(メタデータ) (2023-08-15T17:39:52Z) - Path to Medical AGI: Unify Domain-specific Medical LLMs with the Lowest
Cost [18.4295882376915]
医療人工知能(英語版) (AGI) は、幅広いタスクや領域において知識を理解し、学習し、適用できるシステムを開発することを目的としている。
大規模言語モデル(LLM)は、AGIに向けた重要なステップである。
ドメイン固有の医療用LLMを低コストで統一するためのパラダイムであるメディカルAGI(MedAGI)を提案する。
論文 参考訳(メタデータ) (2023-06-19T08:15:14Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
医療人工知能(MAGI)は、1つの基礎モデルで異なる医療課題を解くことができる。
我々は、Micical-knedge-enhanced mulTimOdal pretRaining (motoR)と呼ばれる新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-04-26T01:26:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。