Artificial General Intelligence for Medical Imaging Analysis
- URL: http://arxiv.org/abs/2306.05480v4
- Date: Thu, 21 Nov 2024 22:08:03 GMT
- Title: Artificial General Intelligence for Medical Imaging Analysis
- Authors: Xiang Li, Lin Zhao, Lu Zhang, Zihao Wu, Zhengliang Liu, Hanqi Jiang, Chao Cao, Shaochen Xu, Yiwei Li, Haixing Dai, Yixuan Yuan, Jun Liu, Gang Li, Dajiang Zhu, Pingkun Yan, Quanzheng Li, Wei Liu, Tianming Liu, Dinggang Shen,
- Abstract summary: Large-scale Artificial General Intelligence (AGI) models have achieved unprecedented success in a variety of general domain tasks.
These models face notable challenges arising from the medical field's inherent complexities and unique characteristics.
This review aims to offer insights into the future implications of AGI in medical imaging, healthcare, and beyond.
- Score: 92.3940918983821
- License:
- Abstract: Large-scale Artificial General Intelligence (AGI) models, including Large Language Models (LLMs) such as ChatGPT/GPT-4, have achieved unprecedented success in a variety of general domain tasks. Yet, when applied directly to specialized domains like medical imaging, which require in-depth expertise, these models face notable challenges arising from the medical field's inherent complexities and unique characteristics. In this review, we delve into the potential applications of AGI models in medical imaging and healthcare, with a primary focus on LLMs, Large Vision Models, and Large Multimodal Models. We provide a thorough overview of the key features and enabling techniques of LLMs and AGI, and further examine the roadmaps guiding the evolution and implementation of AGI models in the medical sector, summarizing their present applications, potentialities, and associated challenges. In addition, we highlight potential future research directions, offering a holistic view on upcoming ventures. This comprehensive review aims to offer insights into the future implications of AGI in medical imaging, healthcare, and beyond.
Related papers
- A Survey of Medical Vision-and-Language Applications and Their Techniques [48.268198631277315]
Medical vision-and-language models (MVLMs) have attracted substantial interest due to their capability to offer a natural language interface for interpreting complex medical data.
Here, we provide a comprehensive overview of MVLMs and the various medical tasks to which they have been applied.
We also examine the datasets used for these tasks and compare the performance of different models based on standardized evaluation metrics.
arXiv Detail & Related papers (2024-11-19T03:27:05Z) - Generative Artificial Intelligence Meets Synthetic Aperture Radar: A Survey [49.29751866761522]
This paper aims to investigate the intersection of GenAI and SAR.
First, we illustrate the common data generation-based applications in SAR field.
Then, an overview of the latest GenAI models is systematically reviewed.
Finally, the corresponding applications in SAR domain are also included.
arXiv Detail & Related papers (2024-11-05T03:06:00Z) - The Era of Foundation Models in Medical Imaging is Approaching : A Scoping Review of the Clinical Value of Large-Scale Generative AI Applications in Radiology [0.0]
Social problems stemming from the shortage of radiologists are intensifying, and artificial intelligence is being highlighted as a potential solution.
Recently emerging large-scale generative AI has expanded from large language models (LLMs) to multi-modal models.
This scoping review systematically organizes existing literature on the clinical value of large-scale generative AI applications.
arXiv Detail & Related papers (2024-09-03T00:48:50Z) - Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
Multimodal large language models (MLLMs) have recently transformed many domains, significantly affecting the medical field. Notably, Gemini-Vision-series (Gemini) and GPT-4-series (GPT-4) models have epitomized a paradigm shift in Artificial General Intelligence for computer vision.
This study evaluated the performance of the Gemini, GPT-4, and 4 popular large models for an exhaustive evaluation across 14 medical imaging datasets.
arXiv Detail & Related papers (2024-07-08T09:08:42Z) - OpenMEDLab: An Open-source Platform for Multi-modality Foundation Models
in Medicine [55.29668193415034]
We present OpenMEDLab, an open-source platform for multi-modality foundation models.
It encapsulates solutions of pioneering attempts in prompting and fine-tuning large language and vision models for frontline clinical and bioinformatic applications.
It opens access to a group of pre-trained foundation models for various medical image modalities, clinical text, protein engineering, etc.
arXiv Detail & Related papers (2024-02-28T03:51:02Z) - VISION-MAE: A Foundation Model for Medical Image Segmentation and
Classification [36.8105960525233]
We present a novel foundation model, VISION-MAE, specifically designed for medical imaging.
VISION-MAE is trained on a dataset of 2.5 million unlabeled images from various modalities.
It is then adapted to classification and segmentation tasks using explicit labels.
arXiv Detail & Related papers (2024-02-01T21:45:12Z) - Foundational Models in Medical Imaging: A Comprehensive Survey and
Future Vision [6.2847894163744105]
Foundation models are large-scale, pre-trained deep-learning models adapted to a wide range of downstream tasks.
These models facilitate contextual reasoning, generalization, and prompt capabilities at test time.
Capitalizing on the advances in computer vision, medical imaging has also marked a growing interest in these models.
arXiv Detail & Related papers (2023-10-28T12:08:12Z) - A Foundation LAnguage-Image model of the Retina (FLAIR): Encoding expert
knowledge in text supervision [17.583536041845402]
We present FLAIR, a pre-trained vision-language model for universal retinal fundus image understanding.
We compiled 37 open-access, mostly categorical fundus imaging datasets from various sources.
We integrate the expert's domain knowledge in the form of descriptive textual prompts, during both pre-training and zero-shot inference.
arXiv Detail & Related papers (2023-08-15T17:39:52Z) - Path to Medical AGI: Unify Domain-specific Medical LLMs with the Lowest
Cost [18.4295882376915]
Medical artificial general intelligence (AGI) aims to develop systems that can understand, learn, and apply knowledge across a wide range of tasks and domains.
Large language models (LLMs) represent a significant step towards AGI.
We propose Medical AGI (MedAGI), a paradigm to unify domain-specific medical LLMs with the lowest cost.
arXiv Detail & Related papers (2023-06-19T08:15:14Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
Medical artificial general intelligence (MAGI) enables one foundation model to solve different medical tasks.
We propose a new paradigm called Medical-knedge-enhanced mulTimOdal pretRaining (MOTOR)
arXiv Detail & Related papers (2023-04-26T01:26:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.