Applications of Large Models in Medicine
- URL: http://arxiv.org/abs/2502.17132v1
- Date: Mon, 24 Feb 2025 13:21:30 GMT
- Title: Applications of Large Models in Medicine
- Authors: YunHe Su, Zhengyang Lu, Junhui Liu, Ke Pang, Haoran Dai, Sa Liu Yuxin Jia, Lujia Ge, Jing-min Yang,
- Abstract summary: Medical Large Models (MedLMs) are revolutionizing healthcare by enhancing disease prediction, diagnostic assistance, personalized treatment planning, and drug discovery.<n>This paper aims to provide a comprehensive overview of the current state and future directions of large models in medicine, underscoring their significance in advancing global health.
- Score: 1.7326218418566917
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores the advancements and applications of large-scale models in the medical field, with a particular focus on Medical Large Models (MedLMs). These models, encompassing Large Language Models (LLMs), Vision Models, 3D Large Models, and Multimodal Models, are revolutionizing healthcare by enhancing disease prediction, diagnostic assistance, personalized treatment planning, and drug discovery. The integration of graph neural networks in medical knowledge graphs and drug discovery highlights the potential of Large Graph Models (LGMs) in understanding complex biomedical relationships. The study also emphasizes the transformative role of Vision-Language Models (VLMs) and 3D Large Models in medical image analysis, anatomical modeling, and prosthetic design. Despite the challenges, these technologies are setting new benchmarks in medical innovation, improving diagnostic accuracy, and paving the way for personalized healthcare solutions. This paper aims to provide a comprehensive overview of the current state and future directions of large models in medicine, underscoring their significance in advancing global health.
Related papers
- Biomedical Foundation Model: A Survey [84.26268124754792]
Foundation models are large-scale pre-trained models that learn from extensive unlabeled datasets.
These models can be adapted to various applications such as question answering and visual understanding.
This survey explores the potential of foundation models across diverse domains within biomedical fields.
arXiv Detail & Related papers (2025-03-03T22:42:00Z) - Vision Foundation Models in Medical Image Analysis: Advances and Challenges [7.224426395050136]
Vision Foundation Models (VFMs) have sparked significant advances in the field of medical image analysis.<n>This paper reviews the state-of-the-art research on the adaptation of VFMs to medical image segmentation.<n>We discuss the latest developments in adapter-based improvements, knowledge distillation techniques, and multi-scale contextual feature modeling.
arXiv Detail & Related papers (2025-02-20T14:13:46Z) - A Survey of Medical Vision-and-Language Applications and Their Techniques [48.268198631277315]
Medical vision-and-language models (MVLMs) have attracted substantial interest due to their capability to offer a natural language interface for interpreting complex medical data.
Here, we provide a comprehensive overview of MVLMs and the various medical tasks to which they have been applied.
We also examine the datasets used for these tasks and compare the performance of different models based on standardized evaluation metrics.
arXiv Detail & Related papers (2024-11-19T03:27:05Z) - Deep Generative Models for 3D Medical Image Synthesis [1.931185411277237]
Deep generative modeling has emerged as a powerful tool for synthesizing realistic medical images.
This chapter explores various deep generative models for 3D medical image synthesis.
arXiv Detail & Related papers (2024-10-23T08:33:23Z) - Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
Multimodal large language models (MLLMs) have recently transformed many domains, significantly affecting the medical field. Notably, Gemini-Vision-series (Gemini) and GPT-4-series (GPT-4) models have epitomized a paradigm shift in Artificial General Intelligence for computer vision.
This study evaluated the performance of the Gemini, GPT-4, and 4 popular large models for an exhaustive evaluation across 14 medical imaging datasets.
arXiv Detail & Related papers (2024-07-08T09:08:42Z) - Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
We show how to automatically collect medical image-text aligned data for pretraining from public resources such as PubMed.
In particular, we present a pipeline that streamlines the pre-training process by initially collecting a large brain image-text dataset.
We also investigate the unique challenge of mapping subfigures to subcaptions in the medical domain.
arXiv Detail & Related papers (2024-04-27T05:03:42Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics.
Deep learning has demonstrated its superiority in various applications, including healthcare.
arXiv Detail & Related papers (2024-02-02T00:31:01Z) - MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer
Vision [119.29105800342779]
MedShapeNet was created to facilitate the translation of data-driven vision algorithms to medical applications.
As a unique feature, we directly model the majority of shapes on the imaging data of real patients.
Our data is freely accessible via a web interface and a Python application programming interface (API) and can be used for discriminative, reconstructive, and variational benchmarks.
arXiv Detail & Related papers (2023-08-30T16:52:20Z) - On the Challenges and Perspectives of Foundation Models for Medical
Image Analysis [17.613533812925635]
Medical foundation models have immense potential in solving a wide range of downstream tasks.
They can help to accelerate the development of accurate and robust models, reduce the large amounts of required labeled data, preserve the privacy and confidentiality of patient data.
arXiv Detail & Related papers (2023-06-09T06:54:58Z) - Artificial General Intelligence for Medical Imaging Analysis [92.3940918983821]
Large-scale Artificial General Intelligence (AGI) models have achieved unprecedented success in a variety of general domain tasks.
These models face notable challenges arising from the medical field's inherent complexities and unique characteristics.
This review aims to offer insights into the future implications of AGI in medical imaging, healthcare, and beyond.
arXiv Detail & Related papers (2023-06-08T18:04:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.