Merging Deep Learning with Expert Knowledge for Seizure Onset Zone
localization from rs-fMRI in Pediatric Pharmaco Resistant Epilepsy
- URL: http://arxiv.org/abs/2306.05572v1
- Date: Thu, 8 Jun 2023 22:07:48 GMT
- Title: Merging Deep Learning with Expert Knowledge for Seizure Onset Zone
localization from rs-fMRI in Pediatric Pharmaco Resistant Epilepsy
- Authors: Payal Kamboj, Ayan Banerjee, Sandeep K. S. Gupta and Varina L.
Boerwinkle
- Abstract summary: Seizure Onset Zones (SOZs) at an early age is an effective treatment for Pharmaco-Resistant Epilepsy (PRE)
Pre-surgical localization of SOZs with intra-cranial EEG (iEEG) requires safe and effective depth electrode placement.
DeepXSOZ is an expert-in-the-loop IC sorting technique that a) can be configured to either significantly reduce expert sorting workload or operate with high sensitivity based on expertise of the surgical team and b) can potentially enable the usage of rs-fMRI as a low cost outpatient pre-surgical screening tool.
- Score: 7.087237546722617
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Surgical disconnection of Seizure Onset Zones (SOZs) at an early age is an
effective treatment for Pharmaco-Resistant Epilepsy (PRE). Pre-surgical
localization of SOZs with intra-cranial EEG (iEEG) requires safe and effective
depth electrode placement. Resting-state functional Magnetic Resonance Imaging
(rs-fMRI) combined with signal decoupling using independent component (IC)
analysis has shown promising SOZ localization capability that guides iEEG lead
placement. However, SOZ ICs identification requires manual expert sorting of
100s of ICs per patient by the surgical team which limits the reproducibility
and availability of this pre-surgical screening. Automated approaches for SOZ
IC identification using rs-fMRI may use deep learning (DL) that encodes
intricacies of brain networks from scarcely available pediatric data but has
low precision, or shallow learning (SL) expert rule-based inference approaches
that are incapable of encoding the full spectrum of spatial features. This
paper proposes DeepXSOZ that exploits the synergy between DL based spatial
feature and SL based expert knowledge encoding to overcome performance
drawbacks of these strategies applied in isolation. DeepXSOZ is an
expert-in-the-loop IC sorting technique that a) can be configured to either
significantly reduce expert sorting workload or operate with high sensitivity
based on expertise of the surgical team and b) can potentially enable the usage
of rs-fMRI as a low cost outpatient pre-surgical screening tool. Comparison
with state-of-art on 52 children with PRE shows that DeepXSOZ achieves
sensitivity of 89.79%, precision of 93.6% and accuracy of 84.6%, and reduces
sorting effort by 6.7-fold. Knowledge level ablation studies show a pathway
towards maximizing patient outcomes while optimizing the machine-expert
collaboration for various scenarios.
Related papers
- MoEDiff-SR: Mixture of Experts-Guided Diffusion Model for Region-Adaptive MRI Super-Resolution [8.193689534916988]
MoEDiff-SR is a Mixture of Experts (MoE)-guided diffusion model for region-adaptive MRI Super-Resolution (SR)
Unlike conventional diffusion-based SR models that apply a uniform denoising process across the entire image, MoEDiff-SR dynamically selects specialized denoising experts at a fine-grained token level.
Experimental results demonstrate that MoEDiff-SR outperforms existing state-of-the-art methods in terms of quantitative image quality metrics, perceptual fidelity, and computational efficiency.
arXiv Detail & Related papers (2025-04-09T22:12:44Z) - The Expert Knowledge combined with AI outperforms AI Alone in Seizure
Onset Zone Localization using resting state fMRI [5.691753509745111]
Integration of expert guidance on seizure onset zone (SOZ) identification from resting state functional MRI (rs-fMRI) connectomics combined with deep learning (DL) techniques enhances the SOZ delineation in patients with refractory epilepsy (RE)
Expert knowledge integrated with DL showed a SOZ localization accuracy of 84.8& and F1 score, harmonic mean of positive predictive value and sensitivity, of 91.7%.
Activations that initiate in gray matter, extend through white matter and end in vascular regions are seen as the most discriminative expert identified SOZ characteristics.
arXiv Detail & Related papers (2023-12-14T21:48:56Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
The problem of how to assess cross-modality medical image synthesis has been largely unexplored.
We propose a new metric K-CROSS to spur progress on this challenging problem.
K-CROSS uses a pre-trained multi-modality segmentation network to predict the lesion location.
arXiv Detail & Related papers (2023-07-10T01:26:48Z) - Autism Spectrum Disorder Classification in Children based on Structural
MRI Features Extracted using Contrastive Variational Autoencoder [5.2927782596213]
Autism spectrum disorder (ASD) is a highly disabling mental disease that brings significant impairments of social interaction ability to the patients.
With the development of the machine learning and neuroimaging technology, extensive research has been conducted on machine classification of ASD based on structural MRI (s-MRI)
Few studies conduct machine classification of ASD for participants below 5-year-old, but, with mediocre predictive accuracy.
arXiv Detail & Related papers (2023-07-03T12:46:19Z) - Robust and Generalisable Segmentation of Subtle Epilepsy-causing
Lesions: a Graph Convolutional Approach [1.180462901068842]
Focal cortical dysplasia (FCD) is a leading cause of drug-resistant epilepsy, which can be cured by surgery.
"Ground truth" manual lesion masks are therefore expensive, limited and have large inter-rater variability.
We propose to approach the problem as semantic segmentation using graph convolutional networks (GCN), which allows our model to learn spatial relationships between brain regions.
arXiv Detail & Related papers (2023-06-02T08:56:56Z) - Safe Deep RL for Intraoperative Planning of Pedicle Screw Placement [61.28459114068828]
We propose an intraoperative planning approach for robotic spine surgery that leverages real-time observation for drill path planning based on Safe Deep Reinforcement Learning (DRL)
Our approach was capable of achieving 90% bone penetration with respect to the gold standard (GS) drill planning.
arXiv Detail & Related papers (2023-05-09T11:42:53Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - Complex-valued Federated Learning with Differential Privacy and MRI Applications [51.34714485616763]
We introduce the complex-valued Gaussian mechanism, whose behaviour we characterise in terms of $f$-DP, $(varepsilon, delta)$-DP and R'enyi-DP.
We present novel complex-valued neural network primitives compatible with DP.
Experimentally, we showcase a proof-of-concept by training federated complex-valued neural networks with DP on a real-world task.
arXiv Detail & Related papers (2021-10-07T14:03:00Z) - COVID-Net US: A Tailored, Highly Efficient, Self-Attention Deep
Convolutional Neural Network Design for Detection of COVID-19 Patient Cases
from Point-of-care Ultrasound Imaging [101.27276001592101]
We introduce COVID-Net US, a highly efficient, self-attention deep convolutional neural network design tailored for COVID-19 screening from lung POCUS images.
Experimental results show that the proposed COVID-Net US can achieve an AUC of over 0.98 while achieving 353X lower architectural complexity, 62X lower computational complexity, and 14.3X faster inference times on a Raspberry Pi.
To advocate affordable healthcare and artificial intelligence for resource-constrained environments, we have made COVID-Net US open source and publicly available as part of the COVID-Net open source initiative.
arXiv Detail & Related papers (2021-08-05T16:47:33Z) - Machine Learning Methods for Brain Network Classification: Application
to Autism Diagnosis using Cortical Morphological Networks [0.0]
We leverage crowdsourcing to build a pool of machine learning pipelines for neurological disorder diagnosis with application to autism spectrum disorder (ASD) diagnosis.
The first-ranked team achieved 70% accuracy, 72.5% sensitivity, and 67.5% specificity, while the second-ranked team achieved 63.8%, 62.5%, 65% respectively.
arXiv Detail & Related papers (2020-04-28T06:23:29Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.