Improving Quantum Circuit Synthesis with Machine Learning
- URL: http://arxiv.org/abs/2306.05622v1
- Date: Fri, 9 Jun 2023 01:53:56 GMT
- Title: Improving Quantum Circuit Synthesis with Machine Learning
- Authors: Mathias Weiden, Ed Younis, Justin Kalloor, John Kubiatowicz, and
Costin Iancu
- Abstract summary: We show how applying machine learning to unitary datasets permits drastic speedups for synthesis algorithms.
This paper presents QSeed, a seeded synthesis algorithm that employs a learned model to quickly propose resource efficient circuit implementations of unitaries.
- Score: 0.7894596908025954
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the Noisy Intermediate Scale Quantum (NISQ) era, finding implementations
of quantum algorithms that minimize the number of expensive and error prone
multi-qubit gates is vital to ensure computations produce meaningful outputs.
Unitary synthesis, the process of finding a quantum circuit that implements
some target unitary matrix, is able to solve this problem optimally in many
cases. However, current bottom-up unitary synthesis algorithms are limited by
their exponentially growing run times. We show how applying machine learning to
unitary datasets permits drastic speedups for synthesis algorithms. This paper
presents QSeed, a seeded synthesis algorithm that employs a learned model to
quickly propose resource efficient circuit implementations of unitaries. QSeed
maintains low gate counts and offers a speedup of $3.7\times$ in synthesis time
over the state of the art for a 64 qubit modular exponentiation circuit, a core
component in Shor's factoring algorithm. QSeed's performance improvements also
generalize to families of circuits not seen during the training process.
Related papers
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Unitary Synthesis of Clifford+T Circuits with Reinforcement Learning [2.4646794072984477]
Unitary synthesis aims to identify a quantum circuit that represents a given unitary.
We apply the tree-search method Gumbel AlphaZero to solve the problem for a subset of exactly synthesizable Clifford+T unitaries.
Our method effectively synthesizes circuits for up to five qubits generated from randomized circuits with up to 60 gates.
arXiv Detail & Related papers (2024-04-23T09:37:52Z) - Quantum Circuit Optimization with AlphaTensor [47.9303833600197]
We develop AlphaTensor-Quantum, a method to minimize the number of T gates that are needed to implement a given circuit.
Unlike existing methods for T-count optimization, AlphaTensor-Quantum can incorporate domain-specific knowledge about quantum computation and leverage gadgets.
Remarkably, it discovers an efficient algorithm akin to Karatsuba's method for multiplication in finite fields.
arXiv Detail & Related papers (2024-02-22T09:20:54Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Wide Quantum Circuit Optimization with Topology Aware Synthesis [0.8469686352132708]
Unitary synthesis is an optimization technique that can achieve optimal multi-qubit gate counts while mapping quantum circuits to restrictive qubit topologies.
We present TopAS, a topology aware synthesis tool built with the emphBQSKit framework that preconditions quantum circuits before mapping.
arXiv Detail & Related papers (2022-06-27T21:59:30Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Approximate quantum gates compiling with self-navigation algorithm [0.0]
We propose an algorithm to approximately compile single-qubit gates with arbitrary accuracy.
Evaluation results show that the overall rotation distance generated by our algorithm is significantly shorter than the commonly used $U3$ gate.
arXiv Detail & Related papers (2022-04-06T03:07:17Z) - Reducing the Depth of Linear Reversible Quantum Circuits [0.0]
In quantum computing the decoherence time of the qubits determines the computation time available.
We propose a practical formulation of a divide and conquer algorithm that produces quantum circuits that are twice as shallow as those produced by existing algorithms.
Overall, we manage to consistently reduce the total depth of a class of reversible functions, with up to 92% savings in an ancilla-free case and up to 99% when ancillary qubits are available.
arXiv Detail & Related papers (2022-01-17T12:36:32Z) - Deterministic Algorithms for Compiling Quantum Circuits with Recurrent
Patterns [0.0]
Current quantum processors are noisy, have limited coherence and imperfect gate implementations.
We present novel deterministic algorithms for compiling recurrent quantum circuit patterns in time.
Our solution produces unmatched results on RyRz circuits.
arXiv Detail & Related papers (2021-02-17T13:59:12Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.