Approximate Quantum Circuit Synthesis for Diagonal Unitary
- URL: http://arxiv.org/abs/2412.01869v1
- Date: Mon, 02 Dec 2024 08:54:23 GMT
- Title: Approximate Quantum Circuit Synthesis for Diagonal Unitary
- Authors: Wenqi Zhang, Jinyang Liu, Zixiang Zhou, Shuai Yang,
- Abstract summary: diagonal unitary synthesis plays a crucial role in quantum circuit synthesis problems.
We propose a quantum circuit synthesis algorithm to design diagonal unitary implementations based on specified quantum resource limits.
Our algorithm can synthesize diagonal unitary for quantum circuits with up to 15 qubits on an ordinary laptop.
- Score: 15.973412320107673
- License:
- Abstract: The quantum circuit synthesis problem bridges quantum algorithm design and quantum hardware implementation in the Noisy Intermediate-Scale Quantum (NISQ) era. In quantum circuit synthesis problems, diagonal unitary synthesis plays a crucial role due to its fundamental and versatile nature. Meanwhile, experimental results have shown that moderately approximating the original algorithm to conserve quantum resources can improve the fidelity of algorithms during quantum execution. Building on this insight, we propose a quantum circuit synthesis algorithm to design diagonal unitary implementations based on specified quantum resource limits. Our algorithm can synthesize diagonal unitary for quantum circuits with up to 15 qubits on an ordinary laptop. In algorithm efficiency, synthesizing an n-qubit unitary matrix with an exact algorithm requires $2^n$ CNOT gates as a baseline. Within the algorithm error $\varepsilon $ range of interest (0\%-12\%), our algorithm achieves a $3.2\varepsilon $ reduction in CNOT gates on average. In runtime, the algorithm efficiently performs, synthesizing 12-qubit diagonal unitary in an average of 6.57 seconds and 15-qubit in approximately 561.71 seconds.
Related papers
- Linear Circuit Synthesis using Weighted Steiner Trees [45.11082946405984]
CNOT circuits are a common building block of general quantum circuits.
This article presents state-of-the-art algorithms for optimizing the number of CNOT gates.
A simulated evaluation shows that the suggested is almost always beneficial and reduces the number of CNOT gates by up to 10%.
arXiv Detail & Related papers (2024-08-07T19:51:22Z) - Improving Quantum Circuit Synthesis with Machine Learning [0.7894596908025954]
We show how applying machine learning to unitary datasets permits drastic speedups for synthesis algorithms.
This paper presents QSeed, a seeded synthesis algorithm that employs a learned model to quickly propose resource efficient circuit implementations of unitaries.
arXiv Detail & Related papers (2023-06-09T01:53:56Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Automatic Depth-Optimized Quantum Circuit Synthesis for Diagonal Unitary
Matrices with Asymptotically Optimal Gate Count [9.194399933498323]
It is of great importance to optimize the depth/gate-count when designing quantum circuits for specific tasks.
In this paper, we propose a depth-optimized synthesis algorithm that automatically produces a quantum circuit for any given diagonal unitary matrix.
arXiv Detail & Related papers (2022-12-02T06:58:26Z) - Wide Quantum Circuit Optimization with Topology Aware Synthesis [0.8469686352132708]
Unitary synthesis is an optimization technique that can achieve optimal multi-qubit gate counts while mapping quantum circuits to restrictive qubit topologies.
We present TopAS, a topology aware synthesis tool built with the emphBQSKit framework that preconditions quantum circuits before mapping.
arXiv Detail & Related papers (2022-06-27T21:59:30Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
Given a unitary matrix that performs certain operation, obtaining the equivalent quantum circuit is a non-trivial task.
Three problems are explored: the coin for the quantum walker, the Toffoli gate and the Fredkin gate.
The algorithm proposed proved to be efficient in decomposition of quantum circuits, and as a generic approach, it is limited only by the available computational power.
arXiv Detail & Related papers (2021-06-06T13:15:25Z) - Quantum Gate Pattern Recognition and Circuit Optimization for Scientific
Applications [1.6329956884407544]
We introduce two ideas for circuit optimization and combine them in a multi-tiered quantum circuit optimization protocol called AQCEL.
AQCEL is deployed on an iterative and efficient quantum algorithm designed to model final state radiation in high energy physics.
Our technique is generic and can be useful for a wide variety of quantum algorithms.
arXiv Detail & Related papers (2021-02-19T16:20:31Z) - Verifying Random Quantum Circuits with Arbitrary Geometry Using Tensor
Network States Algorithm [0.0]
Algorithm is up to $2$ orders of magnitudes faster than Sch$ddottexto$dinger-Feynman algorithm.
We simulate larger random quantum circuits up to $104$ qubits, showing that this algorithm is an ideal tool to verify relatively shallow quantum circuits on near-term quantum computers.
arXiv Detail & Related papers (2020-11-05T02:20:56Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.