Approximate quantum gates compiling with self-navigation algorithm
- URL: http://arxiv.org/abs/2204.02555v1
- Date: Wed, 6 Apr 2022 03:07:17 GMT
- Title: Approximate quantum gates compiling with self-navigation algorithm
- Authors: Run-Hong He, Ren-Feng Hua, Arapat Ablimit and Zhao-Ming Wang
- Abstract summary: We propose an algorithm to approximately compile single-qubit gates with arbitrary accuracy.
Evaluation results show that the overall rotation distance generated by our algorithm is significantly shorter than the commonly used $U3$ gate.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The compiling of quantum gates is crucial for the successful quantum
algorithm implementations. The environmental noise as well as the bandwidth of
control pulses pose a challenge to precise and fast qubit control, especially
in a weakly anharmonic system. In this work, we propose an algorithm to
approximately compile single-qubit gates with arbitrary accuracy. Evaluation
results show that the overall rotation distance generated by our algorithm is
significantly shorter than the commonly used $U3$ gate, then the gate time can
be effectively shortened. The requisite number of pulses and the runtime of
scheme design scale up as $\mathcal{O}[\mathrm{Log}(1/\epsilon)]$ with very
small prefactors, indicating low overhead costs. Moreover, we explore the
trade-off between effectiveness and cost, and find a balance point. In short,
our work opens a new avenue for efficient quantum algorithm implementations
with contemporary quantum technology.
Related papers
- Quantum Multiplexer Simplification for State Preparation [0.7270112855088837]
We propose an algorithm that detects whether a given quantum state can be factored into substates.
The simplification is done by eliminating controls of quantum multiplexers.
Considering efficiency in terms of depth and number of CNOT gates, our method is competitive with the methods in the literature.
arXiv Detail & Related papers (2024-09-09T13:53:02Z) - Quantum-Trajectory-Inspired Lindbladian Simulation [15.006625290843187]
We propose two quantum algorithms for simulating the dynamics of open quantum systems governed by Lindbladians.
The first algorithm achieves a gate complexity independent of the number of jump operators, $m$, marking a significant improvement in efficiency.
The second algorithm achieves near-optimal dependence on the evolution time $t$ and precision $epsilon$ and introduces only an additional $tildeO(m)$ factor.
arXiv Detail & Related papers (2024-08-20T03:08:27Z) - Route-Forcing: Scalable Quantum Circuit Mapping for Scalable Quantum Computing Architectures [41.39072840772559]
Route-Forcing is a quantum circuit mapping algorithm that shows an average speedup of $3.7times$.
We present a quantum circuit mapping algorithm that shows an average speedup of $3.7times$ compared to the state-of-the-art scalable techniques.
arXiv Detail & Related papers (2024-07-24T14:21:41Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - A Fast and Adaptable Algorithm for Optimal Multi-Qubit Pathfinding in Quantum Circuit Compilation [0.0]
This work focuses on multi-qubit pathfinding as a critical subroutine within the quantum circuit compilation mapping problem.
We introduce an algorithm, modelled using binary integer linear programming, that navigates qubits on quantum hardware optimally with respect to circuit SWAP-gate depth.
We have benchmarked the algorithm across a variety of quantum hardware layouts, assessing properties such as computational runtimes, solution SWAP depths, and accumulated SWAP-gate error rates.
arXiv Detail & Related papers (2024-05-29T05:59:15Z) - Improving Quantum Circuit Synthesis with Machine Learning [0.7894596908025954]
We show how applying machine learning to unitary datasets permits drastic speedups for synthesis algorithms.
This paper presents QSeed, a seeded synthesis algorithm that employs a learned model to quickly propose resource efficient circuit implementations of unitaries.
arXiv Detail & Related papers (2023-06-09T01:53:56Z) - Hybrid Gate-Pulse Model for Variational Quantum Algorithms [33.73469431747376]
Current quantum programs are mostly compiled on the gate-level, where quantum circuits are composed of quantum gates.
pulse-level optimization has gained more attention from researchers due to their advantages in terms of circuit duration.
We present a hybrid gate-pulse model that can mitigate these problems.
arXiv Detail & Related papers (2022-12-01T17:06:35Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Efficient Algorithms for Causal Order Discovery in Quantum Networks [44.356294905844834]
Given black-box access to the input and output systems, we develop the first efficient quantum causal order discovery algorithm.
We model the causal order with quantum combs, and our algorithms output the order of inputs and outputs that the given process is compatible with.
Our algorithms will provide efficient ways to detect and optimize available transmission paths in quantum communication networks.
arXiv Detail & Related papers (2020-12-03T07:12:08Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.